Local in Time Regularity Properties of the Navier-Stokes Equations

Let u be a weak solution of the Navier-Stokes equations in a smooth domain Ω ⊆ ℝ3 and a time interval [0,T), 0 < T ≤ ∞, with initial value u0, and vanishing external force. As is well known, global regularity of u for general u0 is an unsolved problem unless we pose additional assumptions on u0 o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indiana University mathematics journal 2007-01, Vol.56 (5), p.2111-2131
Hauptverfasser: Farwig, Reinhard, Kozono, Hideo, Sohr, Hermann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let u be a weak solution of the Navier-Stokes equations in a smooth domain Ω ⊆ ℝ3 and a time interval [0,T), 0 < T ≤ ∞, with initial value u0, and vanishing external force. As is well known, global regularity of u for general u0 is an unsolved problem unless we pose additional assumptions on u0 or on the solution u itself such as Serrin's condition ${\Vert \mathrm{u}\Vert }_{{\mathrm{L}}^{\mathrm{s}}(0,\mathrm{T};{\mathrm{L}}^{\mathrm{q}}\left(\mathrm{\Omega }\right))}
ISSN:0022-2518
1943-5258
DOI:10.1512/iumj.2007.56.3098