Local in Time Regularity Properties of the Navier-Stokes Equations
Let u be a weak solution of the Navier-Stokes equations in a smooth domain Ω ⊆ ℝ3 and a time interval [0,T), 0 < T ≤ ∞, with initial value u0, and vanishing external force. As is well known, global regularity of u for general u0 is an unsolved problem unless we pose additional assumptions on u0 o...
Gespeichert in:
Veröffentlicht in: | Indiana University mathematics journal 2007-01, Vol.56 (5), p.2111-2131 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let u be a weak solution of the Navier-Stokes equations in a smooth domain Ω ⊆ ℝ3 and a time interval [0,T), 0 < T ≤ ∞, with initial value u0, and vanishing external force. As is well known, global regularity of u for general u0 is an unsolved problem unless we pose additional assumptions on u0 or on the solution u itself such as Serrin's condition ${\Vert \mathrm{u}\Vert }_{{\mathrm{L}}^{\mathrm{s}}(0,\mathrm{T};{\mathrm{L}}^{\mathrm{q}}\left(\mathrm{\Omega }\right))} |
---|---|
ISSN: | 0022-2518 1943-5258 |
DOI: | 10.1512/iumj.2007.56.3098 |