Analytic Approximation of Rational Matrix Functions
For a rational matrix function Φ with poles outside the unit circle, we estimate the degree of the unique superoptimal approximation AΦ by matrix functions analytic in the unit disk. We obtain sharp estimates in the case of 2 × 2 matrix functions. It turns out that "generically" deg AΦ ≤ d...
Gespeichert in:
Veröffentlicht in: | Indiana University mathematics journal 2007-01, Vol.56 (4), p.1913-1937 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a rational matrix function Φ with poles outside the unit circle, we estimate the degree of the unique superoptimal approximation AΦ by matrix functions analytic in the unit disk. We obtain sharp estimates in the case of 2 × 2 matrix functions. It turns out that "generically" deg AΦ ≤ degΦ – 2. We prove that for an arbitrary 2 × 2 rational function Φ, deg AΦ ≤ 2degΦ – 3 whenever degΦ ≥ 2. On the other hand, for k ≥ 2, we construct a 2 × 2 matrix function Φ, for which degΦ = k, while deg AΦ = 2k–3. Moreover, we conduct a detailed analysis of the situation when the inequality deg AΦ ≤ degΦ–2 can violate and obtain best possible results. |
---|---|
ISSN: | 0022-2518 1943-5258 |
DOI: | 10.1512/iumj.2007.56.3075 |