Level Sets of Neumann Eigenfunctions

In this paper we prove that the level sets of the first non–constant eigenfunction of the Neumann Laplacian on a convex planar domain have only finitely many connected components. This problem is motivated, in part, by the "hot spots" conjecture of J. Rauch.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indiana University mathematics journal 2006-01, Vol.55 (3), p.923-939
Hauptverfasser: Bañuelos, Rodrigo, Pang, Michael M.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we prove that the level sets of the first non–constant eigenfunction of the Neumann Laplacian on a convex planar domain have only finitely many connected components. This problem is motivated, in part, by the "hot spots" conjecture of J. Rauch.
ISSN:0022-2518
1943-5258
DOI:10.1512/iumj.2006.55.2808