Level Sets of Neumann Eigenfunctions
In this paper we prove that the level sets of the first non–constant eigenfunction of the Neumann Laplacian on a convex planar domain have only finitely many connected components. This problem is motivated, in part, by the "hot spots" conjecture of J. Rauch.
Gespeichert in:
Veröffentlicht in: | Indiana University mathematics journal 2006-01, Vol.55 (3), p.923-939 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we prove that the level sets of the first non–constant eigenfunction of the Neumann Laplacian on a convex planar domain have only finitely many connected components. This problem is motivated, in part, by the "hot spots" conjecture of J. Rauch. |
---|---|
ISSN: | 0022-2518 1943-5258 |
DOI: | 10.1512/iumj.2006.55.2808 |