Minimal Vectors of Positive Operators
We use the method of minimal vectors to prove that certain classes of positive quasinilpotent operators on Banach lattices have invariant subspaces. We say that a collection of operators F on a Banach lattice X satisfies condition (*) if there exists a closed ball B(x0,r) in X such that x0 ≥ 0 and ∥...
Gespeichert in:
Veröffentlicht in: | Indiana University mathematics journal 2005-01, Vol.54 (3), p.861-872 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use the method of minimal vectors to prove that certain classes of positive quasinilpotent operators on Banach lattices have invariant subspaces. We say that a collection of operators F on a Banach lattice X satisfies condition (*) if there exists a closed ball B(x0,r) in X such that x0 ≥ 0 and ∥x0∥ > r, and for every sequence (xn) in B(x0,r) ∩ [0,x0] there exists a subsequence ${\mathrm{x}}_{{\mathrm{n}}_{\mathrm{i}}}$ and a sequence Ki ∈ F such that ${\mathrm{K}}_{\mathrm{i}}{\mathrm{x}}_{{\mathrm{n}}_{\mathrm{i}}}$ converges to a non-zero vector. Let Q be a positive quasinilpotent operator on X, one-to-one, with dense range. Denote 〈Q] = {T ≥ 0 | TQ ≤ QT}. If either the set of all operators dominated by Q or the set of all contractions in 〈Q] satisfies (*), then 〈Q] has a common invariant subspace. We also show that if Q is a one-to-one quasinilpotent interval preserving operator on C0(Ω), then 〈Q] has a common invariant subspace. |
---|---|
ISSN: | 0022-2518 1943-5258 |
DOI: | 10.1512/iumj.2005.54.2544 |