Hard Lefschetz Theorem and Hodge-Riemann Relations for Intersection Cohomology of Nonrational Polytopes

The Hard Lefschetz theorem for intersection cohomology of nonrational polytopes was recently proved by K. Karu [9]. This theorem implies the conjecture of R. Stanley on the unimodularity of the generalized h-vector. In this paper we strengthen Karu's theorem by introducing a canonical bilinear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indiana University mathematics journal 2005-01, Vol.54 (1), p.263-307
1. Verfasser: Bressler, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Hard Lefschetz theorem for intersection cohomology of nonrational polytopes was recently proved by K. Karu [9]. This theorem implies the conjecture of R. Stanley on the unimodularity of the generalized h-vector. In this paper we strengthen Karu's theorem by introducing a canonical bilinear form (·,·)Φ on the intersection cohomology IH(Φ) of a complete fan Φ and proving the Hodge-Riemann bilinear relations for (·,·)Φ.
ISSN:0022-2518
1943-5258
DOI:10.1512/iumj.2005.54.2528