Hard Lefschetz Theorem and Hodge-Riemann Relations for Intersection Cohomology of Nonrational Polytopes
The Hard Lefschetz theorem for intersection cohomology of nonrational polytopes was recently proved by K. Karu [9]. This theorem implies the conjecture of R. Stanley on the unimodularity of the generalized h-vector. In this paper we strengthen Karu's theorem by introducing a canonical bilinear...
Gespeichert in:
Veröffentlicht in: | Indiana University mathematics journal 2005-01, Vol.54 (1), p.263-307 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Hard Lefschetz theorem for intersection cohomology of nonrational polytopes was recently proved by K. Karu [9]. This theorem implies the conjecture of R. Stanley on the unimodularity of the generalized h-vector. In this paper we strengthen Karu's theorem by introducing a canonical bilinear form (·,·)Φ on the intersection cohomology IH(Φ) of a complete fan Φ and proving the Hodge-Riemann bilinear relations for (·,·)Φ. |
---|---|
ISSN: | 0022-2518 1943-5258 |
DOI: | 10.1512/iumj.2005.54.2528 |