Symmetry-Breaking Bifurcations for Free Boundary Problems
Free boundary problems often possess solutions which are radially symmetric. In this paper we demonstrate how to establish symmetry-breaking bifurcation branches of solutions by reducing the bifurcation problem to one for which standard bifurcation theory can be applied. This reduction is performed...
Gespeichert in:
Veröffentlicht in: | Indiana University mathematics journal 2005-01, Vol.54 (3), p.927-947 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Free boundary problems often possess solutions which are radially symmetric. In this paper we demonstrate how to establish symmetry-breaking bifurcation branches of solutions by reducing the bifurcation problem to one for which standard bifurcation theory can be applied. This reduction is performed by first introducing a suitable diffeomorphism which maps the near circular unknown domain onto a disc or a ball, and then verifying the assumptions of the Crandall-Rabinowitz theorem. We carry out the analysis in detail, for the case of one elliptic equation with a Neumann condition at the free boundary and with Dirichlet data given by the curvature of the free boundary. Other examples are briefly mentioned. |
---|---|
ISSN: | 0022-2518 1943-5258 |
DOI: | 10.1512/iumj.2005.54.2473 |