Eisenman Intrinsic Measures and Algebraic Invariants

We generalize the Sakai theorem that says that every complex algebraic manifold of general type is measure hyperbolic. We introduce the notion of k-measure hyperbolicity for every Eisenman k-measure and, following Sakai, we consider an analogue k̄k of the Kodaira logarithmic dimension which construc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indiana University mathematics journal 1999, Vol.48 (2), p.449-467
1. Verfasser: Kaliman, Shulim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We generalize the Sakai theorem that says that every complex algebraic manifold of general type is measure hyperbolic. We introduce the notion of k-measure hyperbolicity for every Eisenman k-measure and, following Sakai, we consider an analogue k̄k of the Kodaira logarithmic dimension which construction uses logarithmic k-forms. We show that a complex algebraic manifold is k-measure hyperbolic if k̄k(X) = dimX.
ISSN:0022-2518
1943-5258
DOI:10.1512/iumj.1999.48.1579