Eisenman Intrinsic Measures and Algebraic Invariants
We generalize the Sakai theorem that says that every complex algebraic manifold of general type is measure hyperbolic. We introduce the notion of k-measure hyperbolicity for every Eisenman k-measure and, following Sakai, we consider an analogue k̄k of the Kodaira logarithmic dimension which construc...
Gespeichert in:
Veröffentlicht in: | Indiana University mathematics journal 1999, Vol.48 (2), p.449-467 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We generalize the Sakai theorem that says that every complex algebraic manifold of general type is measure hyperbolic. We introduce the notion of k-measure hyperbolicity for every Eisenman k-measure and, following Sakai, we consider an analogue k̄k of the Kodaira logarithmic dimension which construction uses logarithmic k-forms. We show that a complex algebraic manifold is k-measure hyperbolic if k̄k(X) = dimX. |
---|---|
ISSN: | 0022-2518 1943-5258 |
DOI: | 10.1512/iumj.1999.48.1579 |