Double Exponential Integrability of Convolution Operators in Generalized Lorentz–Zygmund Spaces

This paper provides estimates for an appropriate norm of the convolution of a function in a Lorentz space with one in a generalized Lorentz-Zygmund space. As a corollary, it is shown that the Riesz potential of a function in an appropriate generalized Lorentz-Zygmund space satisfies a 'double e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indiana University mathematics journal 1995, Vol.44 (1), p.19-43
Hauptverfasser: Edmunds, David E., Gurka, Petr, Opic, Bohumír
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper provides estimates for an appropriate norm of the convolution of a function in a Lorentz space with one in a generalized Lorentz-Zygmund space. As a corollary, it is shown that the Riesz potential of a function in an appropriate generalized Lorentz-Zygmund space satisfies a 'double exponential' integrability condition. The results extend those of Brézis-Wainger on the convolution of functions in Lorentz spaces which lead to exponential integrability.
ISSN:0022-2518
1943-5258
DOI:10.1512/iumj.1995.44.1977