Double Exponential Integrability of Convolution Operators in Generalized Lorentz–Zygmund Spaces
This paper provides estimates for an appropriate norm of the convolution of a function in a Lorentz space with one in a generalized Lorentz-Zygmund space. As a corollary, it is shown that the Riesz potential of a function in an appropriate generalized Lorentz-Zygmund space satisfies a 'double e...
Gespeichert in:
Veröffentlicht in: | Indiana University mathematics journal 1995, Vol.44 (1), p.19-43 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper provides estimates for an appropriate norm of the convolution of a function in a Lorentz space with one in a generalized Lorentz-Zygmund space. As a corollary, it is shown that the Riesz potential of a function in an appropriate generalized Lorentz-Zygmund space satisfies a 'double exponential' integrability condition. The results extend those of Brézis-Wainger on the convolution of functions in Lorentz spaces which lead to exponential integrability. |
---|---|
ISSN: | 0022-2518 1943-5258 |
DOI: | 10.1512/iumj.1995.44.1977 |