Towards Full Stack Adaptivity in Permissioned Blockchains

This paper articulates our vision for a learning-based untrustworthy distributed database. We focus on permissioned blockchain systems as an emerging instance of untrustworthy distributed databases and argue that as novel smart contracts, modern hardware, and new cloud platforms arise, future-proof...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the VLDB Endowment 2024-01, Vol.17 (5), p.1073-1080
Hauptverfasser: Wu, Chenyuan, Amiri, Mohammad Javad, Qin, Haoyun, Mehta, Bhavana, Marcus, Ryan, Loo, Boon Thau
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper articulates our vision for a learning-based untrustworthy distributed database. We focus on permissioned blockchain systems as an emerging instance of untrustworthy distributed databases and argue that as novel smart contracts, modern hardware, and new cloud platforms arise, future-proof permissioned blockchain systems need to be designed with full-stack adaptivity in mind. At the application level, a future-proof system must adaptively learn the best-performing transaction processing paradigm and quickly adapt to new hardware and unanticipated workload changes on the fly. Likewise, the Byzantine consensus layer must dynamically adjust itself to the workloads, faulty conditions, and network configuration while maintaining compatibility with the transaction processing paradigm. At the infrastructure level, cloud providers must enable cross-layer adaptation, which identifies performance bottlenecks and possible attacks, and determines at runtime the degree of resource disaggregation that best meets application requirements. Within this vision of the future, our paper outlines several research challenges together with some preliminary approaches.
ISSN:2150-8097
2150-8097
DOI:10.14778/3641204.3641216