The LDBC Social Network Benchmark: Business Intelligence Workload
The Social Network Benchmark's Business Intelligence workload (SNB BI) is a comprehensive graph OLAP benchmark targeting analytical data systems capable of supporting graph workloads. This paper marks the finalization of almost a decade of research in academia and industry via the Linked Data B...
Gespeichert in:
Veröffentlicht in: | Proceedings of the VLDB Endowment 2022-12, Vol.16 (4), p.877-890 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Social Network Benchmark's Business Intelligence workload (SNB BI) is a comprehensive graph OLAP benchmark targeting analytical data systems capable of supporting graph workloads. This paper marks the finalization of almost a decade of research in academia and industry via the Linked Data Benchmark Council (LDBC). SNB BI advances the state-of-the art in synthetic and scalable analytical database benchmarks in many aspects. Its base is a sophisticated data generator, implemented on a scalable distributed infrastructure, that produces a social graph with small-world phenomena, whose value properties follow skewed and correlated distributions and where values correlate with structure. This is a temporal graph where all nodes and edges follow lifespan-based rules with temporal skew enabling realistic and consistent temporal inserts and (recursive) deletes. The query workload exploiting this skew and correlation is based on LDBC's "choke point"-driven design methodology and will entice technical and scientific improvements in future (graph) database systems. SNB BI includes the first adoption of "parameter curation" in an analytical benchmark, a technique that ensures stable runtimes of query variants across different parameter values. Two performance metrics characterize peak single-query performance (power) and sustained concurrent query throughput. To demonstrate the portability of the benchmark, we present experimental results on a relational and a graph DBMS. Note that these do not constitute an official LDBC Benchmark Result - only audited results can use this trademarked term. |
---|---|
ISSN: | 2150-8097 2150-8097 |
DOI: | 10.14778/3574245.3574270 |