SIFTER: space-efficient value iteration for finite-horizon MDPs
Can we solve finite-horizon Markov decision processes (FHMDPs) while raising low memory requirements? Such models find application in many cases where a decision-making agent needs to act in a probabilistic environment, from resource management to medicine to service provisioning. However, computing...
Gespeichert in:
Veröffentlicht in: | Proceedings of the VLDB Endowment 2022-09, Vol.16 (1), p.90-98 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Can we solve finite-horizon Markov decision processes (FHMDPs) while raising low memory requirements? Such models find application in many cases where a decision-making agent needs to act in a probabilistic environment, from resource management to medicine to service provisioning. However, computing optimal policies such an agent should follow by dynamic programming value iteration raises either prohibitive space complexity, or, in reverse, non-scalable time complexity requirements. This scalability question has been largely neglected. In this paper, we propose SIFTER (Space Efficient Finite Horizon MDPs), a suite of algorithms that achieve a golden middle between space and time requirements. Our former algorithm raises space complexity growing with the square root of the horizon's length without a time-complexity overhead, while the latter's space requirements depend only logarithmically in horizon length with a corresponding logarithmic time complexity overhead. A thorough experimental study under diverse settings confirms that SIFTER algorithms achieve the predicted gains, while approximation techniques do not achieve the same combination of time efficiency, space efficiency, and result quality. |
---|---|
ISSN: | 2150-8097 2150-8097 |
DOI: | 10.14778/3561261.3561269 |