Hardware acceleration of compression and encryption in SAP HANA

With the advent of cloud computing, where computational resources are expensive and data movement needs to be secured and minimized, database management systems need to reconsider their architecture to accommodate such requirements. In this paper, we present our analysis, design and evaluation of an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the VLDB Endowment 2022-08, Vol.15 (12), p.3277-3291
Hauptverfasser: Chiosa, Monica, Maschi, Fabio, Müller, Ingo, Alonso, Gustavo, May, Norman
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the advent of cloud computing, where computational resources are expensive and data movement needs to be secured and minimized, database management systems need to reconsider their architecture to accommodate such requirements. In this paper, we present our analysis, design and evaluation of an FPGA-based hardware accelerator for offloading compression and encryption for SAP HANA, SAP's Software-as-a-Service (SaaS) in-memory database. Firstly, we identify expensive data-transformation operations in the I/O path. Then we present the design details of a system consisting of compression followed by different types of encryption to accommodate different security levels, and identify which combinations maximize performance. We also analyze the performance benefits of offloading decryption to the FPGA followed by decompression on the CPU. The experimental evaluation using SAP HANA traces shows that analytical engines can benefit from FPGA hardware offloading. The results identify a number of important trade-offs (e.g., the system can accommodate low-latency secured transactions to high-performance use cases or offer lower storage cost by also compressing payloads for less critical use cases), and provide valuable information to researchers and practitioners exploring the nascent space of hardware accelerators for database engines.
ISSN:2150-8097
2150-8097
DOI:10.14778/3554821.3554822