Cost modelling for optimal data placement in heterogeneous main memory
The cost of DRAM contributes significantly to the operating costs of in-memory database management systems (IMDBMS). Persistent memory (PMEM) is an alternative type of byte-addressable memory that offers --- in addition to persistence --- higher capacities than DRAM at a lower price with the disadva...
Gespeichert in:
Veröffentlicht in: | Proceedings of the VLDB Endowment 2022-07, Vol.15 (11), p.2867-2880 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The cost of DRAM contributes significantly to the operating costs of in-memory database management systems (IMDBMS). Persistent memory (PMEM) is an alternative type of byte-addressable memory that offers --- in addition to persistence --- higher capacities than DRAM at a lower price with the disadvantage of increased latencies and reduced bandwidth. This paper evaluates PMEM as a cheaper alternative to DRAM for storing table base data, which can make up a significant fraction of an IMDBMS' total memory footprint. Using a prototype implementation in the SAP HANA IMDBMS, we find that placing all table data in PMEM can reduce query performance in analytical benchmarks by more than a factor of two, while transactional workloads are less affected. To quantify the performance impact of placing individual data structures in PMEM, we propose a cost model based on a lightweight workload characterization. Using this model, we show how to place data pareto-optimally in the heterogeneous memory. Our evaluation demonstrates the accuracy of the model and shows that it is possible to place more than 75% of table data in PMEM while keeping performance within 10% of the DRAM baseline for two analytical benchmarks. |
---|---|
ISSN: | 2150-8097 2150-8097 |
DOI: | 10.14778/3551793.3551837 |