ABC: attributed bipartite co-clustering
Finding a set of co-clusters in a bipartite network is a fundamental and important problem. In this paper, we present the Attributed Bipartite Co-clustering (ABC) problem which unifies two main concepts: (i) bipartite modularity optimization, and (ii) attribute cohesiveness. To the best of our knowl...
Gespeichert in:
Veröffentlicht in: | Proceedings of the VLDB Endowment 2022-06, Vol.15 (10), p.2134-2147 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2147 |
---|---|
container_issue | 10 |
container_start_page | 2134 |
container_title | Proceedings of the VLDB Endowment |
container_volume | 15 |
creator | Kim, Junghoon Feng, Kaiyu Cong, Gao Zhu, Diwen Yu, Wenyuan Miao, Chunyan |
description | Finding a set of co-clusters in a bipartite network is a fundamental and important problem. In this paper, we present the Attributed Bipartite Co-clustering (ABC) problem which unifies two main concepts: (i) bipartite modularity optimization, and (ii) attribute cohesiveness. To the best of our knowledge, this is the first work to find co-clusters while considering the attribute cohesiveness. We prove that ABC is NP-hard and is not in APX, unless P=NP. We propose three algorithms: (1) a top-down algorithm; (2) a bottom-up algorithm; (3) a group matching algorithm. Extensive experimental results on real-world attributed bipartite networks demonstrate the efficiency and effectiveness of our algorithms. |
doi_str_mv | 10.14778/3547305.3547318 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_3547305_3547318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_3547305_3547318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c111t-2f15ea7f2275247b6bbd0a8389e32f4a1509e0de701e99e55b6ad0d643aea4563</originalsourceid><addsrcrecordid>eNpNj7kKwkAURQcXcO39ieh7s08ZgxsINloPk-QNKIqSsfHvFU1hdW51D4exGcIcpTF2IZQ0AtT8S7QdNuSoILPgTO9vD9gopQuAthrtkHXzZTFh_RiuiaYtx-y0Xh2LbbY_bHZFvs8qRHxmPKKiYCLnRnFpSl2WNQQrrCPBowwfgyOoyQCSc6RUqUMNtZYiUJBKizGD32_V3FNqKPpHc76F5uUR_DfCtxG-jRBvrkw2bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ABC: attributed bipartite co-clustering</title><source>ACM Digital Library Complete</source><creator>Kim, Junghoon ; Feng, Kaiyu ; Cong, Gao ; Zhu, Diwen ; Yu, Wenyuan ; Miao, Chunyan</creator><creatorcontrib>Kim, Junghoon ; Feng, Kaiyu ; Cong, Gao ; Zhu, Diwen ; Yu, Wenyuan ; Miao, Chunyan</creatorcontrib><description>Finding a set of co-clusters in a bipartite network is a fundamental and important problem. In this paper, we present the Attributed Bipartite Co-clustering (ABC) problem which unifies two main concepts: (i) bipartite modularity optimization, and (ii) attribute cohesiveness. To the best of our knowledge, this is the first work to find co-clusters while considering the attribute cohesiveness. We prove that ABC is NP-hard and is not in APX, unless P=NP. We propose three algorithms: (1) a top-down algorithm; (2) a bottom-up algorithm; (3) a group matching algorithm. Extensive experimental results on real-world attributed bipartite networks demonstrate the efficiency and effectiveness of our algorithms.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/3547305.3547318</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2022-06, Vol.15 (10), p.2134-2147</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c111t-2f15ea7f2275247b6bbd0a8389e32f4a1509e0de701e99e55b6ad0d643aea4563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kim, Junghoon</creatorcontrib><creatorcontrib>Feng, Kaiyu</creatorcontrib><creatorcontrib>Cong, Gao</creatorcontrib><creatorcontrib>Zhu, Diwen</creatorcontrib><creatorcontrib>Yu, Wenyuan</creatorcontrib><creatorcontrib>Miao, Chunyan</creatorcontrib><title>ABC: attributed bipartite co-clustering</title><title>Proceedings of the VLDB Endowment</title><description>Finding a set of co-clusters in a bipartite network is a fundamental and important problem. In this paper, we present the Attributed Bipartite Co-clustering (ABC) problem which unifies two main concepts: (i) bipartite modularity optimization, and (ii) attribute cohesiveness. To the best of our knowledge, this is the first work to find co-clusters while considering the attribute cohesiveness. We prove that ABC is NP-hard and is not in APX, unless P=NP. We propose three algorithms: (1) a top-down algorithm; (2) a bottom-up algorithm; (3) a group matching algorithm. Extensive experimental results on real-world attributed bipartite networks demonstrate the efficiency and effectiveness of our algorithms.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNj7kKwkAURQcXcO39ieh7s08ZgxsINloPk-QNKIqSsfHvFU1hdW51D4exGcIcpTF2IZQ0AtT8S7QdNuSoILPgTO9vD9gopQuAthrtkHXzZTFh_RiuiaYtx-y0Xh2LbbY_bHZFvs8qRHxmPKKiYCLnRnFpSl2WNQQrrCPBowwfgyOoyQCSc6RUqUMNtZYiUJBKizGD32_V3FNqKPpHc76F5uUR_DfCtxG-jRBvrkw2bw</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Kim, Junghoon</creator><creator>Feng, Kaiyu</creator><creator>Cong, Gao</creator><creator>Zhu, Diwen</creator><creator>Yu, Wenyuan</creator><creator>Miao, Chunyan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202206</creationdate><title>ABC</title><author>Kim, Junghoon ; Feng, Kaiyu ; Cong, Gao ; Zhu, Diwen ; Yu, Wenyuan ; Miao, Chunyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c111t-2f15ea7f2275247b6bbd0a8389e32f4a1509e0de701e99e55b6ad0d643aea4563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Junghoon</creatorcontrib><creatorcontrib>Feng, Kaiyu</creatorcontrib><creatorcontrib>Cong, Gao</creatorcontrib><creatorcontrib>Zhu, Diwen</creatorcontrib><creatorcontrib>Yu, Wenyuan</creatorcontrib><creatorcontrib>Miao, Chunyan</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Junghoon</au><au>Feng, Kaiyu</au><au>Cong, Gao</au><au>Zhu, Diwen</au><au>Yu, Wenyuan</au><au>Miao, Chunyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ABC: attributed bipartite co-clustering</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2022-06</date><risdate>2022</risdate><volume>15</volume><issue>10</issue><spage>2134</spage><epage>2147</epage><pages>2134-2147</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>Finding a set of co-clusters in a bipartite network is a fundamental and important problem. In this paper, we present the Attributed Bipartite Co-clustering (ABC) problem which unifies two main concepts: (i) bipartite modularity optimization, and (ii) attribute cohesiveness. To the best of our knowledge, this is the first work to find co-clusters while considering the attribute cohesiveness. We prove that ABC is NP-hard and is not in APX, unless P=NP. We propose three algorithms: (1) a top-down algorithm; (2) a bottom-up algorithm; (3) a group matching algorithm. Extensive experimental results on real-world attributed bipartite networks demonstrate the efficiency and effectiveness of our algorithms.</abstract><doi>10.14778/3547305.3547318</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2150-8097 |
ispartof | Proceedings of the VLDB Endowment, 2022-06, Vol.15 (10), p.2134-2147 |
issn | 2150-8097 2150-8097 |
language | eng |
recordid | cdi_crossref_primary_10_14778_3547305_3547318 |
source | ACM Digital Library Complete |
title | ABC: attributed bipartite co-clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ABC:%20attributed%20bipartite%20co-clustering&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Kim,%20Junghoon&rft.date=2022-06&rft.volume=15&rft.issue=10&rft.spage=2134&rft.epage=2147&rft.pages=2134-2147&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/3547305.3547318&rft_dat=%3Ccrossref%3E10_14778_3547305_3547318%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |