ABC: attributed bipartite co-clustering
Finding a set of co-clusters in a bipartite network is a fundamental and important problem. In this paper, we present the Attributed Bipartite Co-clustering (ABC) problem which unifies two main concepts: (i) bipartite modularity optimization, and (ii) attribute cohesiveness. To the best of our knowl...
Gespeichert in:
Veröffentlicht in: | Proceedings of the VLDB Endowment 2022-06, Vol.15 (10), p.2134-2147 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Finding a set of co-clusters in a bipartite network is a fundamental and important problem. In this paper, we present the Attributed Bipartite Co-clustering (ABC) problem which unifies two main concepts: (i) bipartite modularity optimization, and (ii) attribute cohesiveness. To the best of our knowledge, this is the first work to find co-clusters while considering the attribute cohesiveness. We prove that ABC is NP-hard and is not in APX, unless P=NP. We propose three algorithms: (1) a top-down algorithm; (2) a bottom-up algorithm; (3) a group matching algorithm. Extensive experimental results on real-world attributed bipartite networks demonstrate the efficiency and effectiveness of our algorithms. |
---|---|
ISSN: | 2150-8097 2150-8097 |
DOI: | 10.14778/3547305.3547318 |