Achieving high throughput and elasticity in a larger-than-memory store
Millions of sensors, mobile applications and machines now generate billions of events. Specialized many-core key-value stores (KVSs) can ingest and index these events at high rates (over 100 Mops/s on one machine) if events are generated on the same machine; however, to be practical and cost-effecti...
Gespeichert in:
Veröffentlicht in: | Proceedings of the VLDB Endowment 2021-04, Vol.14 (8), p.1427-1440 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Millions of sensors, mobile applications and machines now generate billions of events. Specialized many-core key-value stores (KVSs) can ingest and index these events at high rates (over 100 Mops/s on one machine) if events are generated on the same machine; however, to be practical and cost-effective they must ingest events over the network and scale across cloud resources elastically.
We present Shadowfax, a new distributed KVS based on FASTER, that transparently spans DRAM, SSDs, and cloud blob storage while serving 130 Mops/s/VM over commodity Azure VMs using conventional Linux TCP. Beyond high single-VM performance, Shadowfax uses a unique approach to distributed reconfiguration that avoids any server-side key ownership checks or cross-core coordination both during normal operation and migration. Hence, Shadowfax can shift load in 17 s to improve system throughput by 10 Mops/s with little disruption. Compared to the state-of-the-art, it has 8x better throughput (than Seastar+memcached) and avoids costly I/O to move cold data during migration. On 12 machines, Shadowfax retains its high throughput to perform 930 Mops/s, which, to the best of our knowledge, is the highest reported throughput for a distributed KVS used for large-scale data ingestion and indexing. |
---|---|
ISSN: | 2150-8097 2150-8097 |
DOI: | 10.14778/3457390.3457406 |