Dynamic speculative optimizations for SQL compilation in Apache Spark

Big-data systems have gained significant momentum, and Apache Spark is becoming a de-facto standard for modern data analytics. Spark relies on SQL query compilation to optimize the execution performance of analytical workloads on a variety of data sources. Despite its scalable architecture, Spark�...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the VLDB Endowment 2020-01, Vol.13 (5), p.754-767
Hauptverfasser: Schiavio, Filippo, Bonetta, Daniele, Binder, Walter
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Big-data systems have gained significant momentum, and Apache Spark is becoming a de-facto standard for modern data analytics. Spark relies on SQL query compilation to optimize the execution performance of analytical workloads on a variety of data sources. Despite its scalable architecture, Spark's SQL code generation suffers from significant runtime overheads related to data access and de-serialization. Such performance penalty can be significant, especially when applications operate on human-readable data formats such as CSV or JSON. In this paper we present a new approach to query compilation that overcomes these limitations by relying on run-time profiling and dynamic code generation. Our new SQL compiler for Spark produces highly-efficient machine code, leading to speedups of up to 4.4x on the TPC-H benchmark with textual-form data formats such as CSV or JSON.
ISSN:2150-8097
2150-8097
DOI:10.14778/3377369.3377382