Dynamic speculative optimizations for SQL compilation in Apache Spark
Big-data systems have gained significant momentum, and Apache Spark is becoming a de-facto standard for modern data analytics. Spark relies on SQL query compilation to optimize the execution performance of analytical workloads on a variety of data sources. Despite its scalable architecture, Spark...
Gespeichert in:
Veröffentlicht in: | Proceedings of the VLDB Endowment 2020-01, Vol.13 (5), p.754-767 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Big-data systems have gained significant momentum, and Apache Spark is becoming a de-facto standard for modern data analytics. Spark relies on SQL query compilation to optimize the execution performance of analytical workloads on a variety of data sources. Despite its scalable architecture, Spark's SQL code generation suffers from significant runtime overheads related to data access and de-serialization. Such performance penalty can be significant, especially when applications operate on human-readable data formats such as CSV or JSON.
In this paper we present a new approach to query compilation that overcomes these limitations by relying on run-time profiling and dynamic code generation. Our new SQL compiler for Spark produces highly-efficient machine code, leading to speedups of up to 4.4x on the TPC-H benchmark with textual-form data formats such as CSV or JSON. |
---|---|
ISSN: | 2150-8097 2150-8097 |
DOI: | 10.14778/3377369.3377382 |