AggChecker: a fact-checking system for text summaries of relational data sets
We demonstrate AggChecker, a novel tool for verifying textual summaries of relational data sets. The system automatically verifies natural language claims about numerical aggregates against the underlying raw data. The system incorporates a combination of natural language processing, information ret...
Gespeichert in:
Veröffentlicht in: | Proceedings of the VLDB Endowment 2019-08, Vol.12 (12), p.1938-1941 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We demonstrate AggChecker, a novel tool for verifying textual summaries of relational data sets. The system automatically verifies natural language claims about numerical aggregates against the underlying raw data. The system incorporates a combination of natural language processing, information retrieval, machine learning, and efficient query processing strategies. Each claim is translated into a semantically equivalent SQL query and evaluated against the database. Our primary goal is analogous to that of a spell-checker: to identify erroneous claims and provide guidance in correcting them. In this demonstration, we show that our system enables users to verify text summaries much more efficiently than a standard SQL interface. |
---|---|
ISSN: | 2150-8097 2150-8097 |
DOI: | 10.14778/3352063.3352104 |