S-Store: streaming meets transaction processing

Stream processing addresses the needs of real-time applications. Transaction processing addresses the coordination and safety of short atomic computations. Heretofore, these two modes of operation existed in separate, stove-piped systems. In this work, we attempt to fuse the two computational paradi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the VLDB Endowment 2015-09, Vol.8 (13), p.2134-2145
Hauptverfasser: Meehan, John, Tatbul, Nesime, Zdonik, Stan, Aslantas, Cansu, Cetintemel, Ugur, Du, Jiang, Kraska, Tim, Madden, Samuel, Maier, David, Pavlo, Andrew, Stonebraker, Michael, Tufte, Kristin, Wang, Hao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stream processing addresses the needs of real-time applications. Transaction processing addresses the coordination and safety of short atomic computations. Heretofore, these two modes of operation existed in separate, stove-piped systems. In this work, we attempt to fuse the two computational paradigms in a single system called S-Store. In this way, S-Store can simultaneously accommodate OLTP and streaming applications. We present a simple transaction model for streams that integrates seamlessly with a traditional OLTP system, and provides both ACID and stream-oriented guarantees. We chose to build S-Store as an extension of H-Store - an open-source, in-memory, distributed OLTP database system. By implementing S-Store in this way, we can make use of the transaction processing facilities that H-Store already provides, and we can concentrate on the additional features that are needed to support streaming. Similar implementations could be done using other main-memory OLTP platforms. We show that we can actually achieve higher throughput for streaming workloads in S-Store than an equivalent deployment in H-Store alone. We also show how this can be achieved within H-Store with the addition of a modest amount of new functionality. Furthermore, we compare S-Store to two state-of-the-art streaming systems, Esper and Apache Storm, and show how S-Store can sometimes exceed their performance while at the same time providing stronger correctness guarantees.
ISSN:2150-8097
2150-8097
DOI:10.14778/2831360.2831367