GraphTwist: fast iterative graph computation with two-tier optimizations

Large-scale real-world graphs are known to have highly skewed vertex degree distribution and highly skewed edge weight distribution. Existing vertex-centric iterative graph computation models suffer from a number of serious problems: (1) poor performance of parallel execution due to inherent workloa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the VLDB Endowment 2015-07, Vol.8 (11), p.1262-1273
Hauptverfasser: Zhou, Yang, Liu, Ling, Lee, Kisung, Zhang, Qi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Large-scale real-world graphs are known to have highly skewed vertex degree distribution and highly skewed edge weight distribution. Existing vertex-centric iterative graph computation models suffer from a number of serious problems: (1) poor performance of parallel execution due to inherent workload imbalance at vertex level; (2) inefficient CPU resource utilization due to short execution time for low-degree vertices compared to the cost of in-memory or on-disk vertex access; and (3) incapability of pruning insignificant vertices or edges to improve the computational performance. In this paper, we address the above technical challenges by designing and implementing a scalable, efficient, and provably correct two-tier graph parallel processing system, GraphTwist. At storage and access tier, GraphTwist maximizes parallel efficiency by employing three graph parallel abstractions for partitioning a big graph by slice, strip or dice based partitioning techniques. At computation tier, GraphTwist presents two utility-aware pruning strategies: slice pruning and cut pruning, to further improve the computational performance while preserving the computational utility defined by graph applications. Theoretic analysis is provided to quantitatively prove that iterative graph computations powered by utility-aware pruning techniques can achieve a very good approximation with bounds on the introduced error.
ISSN:2150-8097
2150-8097
DOI:10.14778/2809974.2809987