Path problems in temporal graphs

Shortest path is a fundamental graph problem with numerous applications. However, the concept of classic shortest path is insufficient or even flawed in a temporal graph, as the temporal information determines the order of activities along any path. In this paper, we show the shortcomings of classic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the VLDB Endowment 2014-05, Vol.7 (9), p.721-732
Hauptverfasser: Wu, Huanhuan, Cheng, James, Huang, Silu, Ke, Yiping, Lu, Yi, Xu, Yanyan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 732
container_issue 9
container_start_page 721
container_title Proceedings of the VLDB Endowment
container_volume 7
creator Wu, Huanhuan
Cheng, James
Huang, Silu
Ke, Yiping
Lu, Yi
Xu, Yanyan
description Shortest path is a fundamental graph problem with numerous applications. However, the concept of classic shortest path is insufficient or even flawed in a temporal graph, as the temporal information determines the order of activities along any path. In this paper, we show the shortcomings of classic shortest path in a temporal graph, and study various concepts of "shortest" path for temporal graphs. Computing these temporal paths is challenging as subpaths of a "shortest" path may not be "shortest" in a temporal graph. We investigate properties of the temporal paths and propose efficient algorithms to compute them. We tested our algorithms on real world temporal graphs to verify their efficiency, and also show that temporal paths are essential for studying temporal graphs by comparing shortest paths in normal static graphs.
doi_str_mv 10.14778/2732939.2732945
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_2732939_2732945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_2732939_2732945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-d12544335d5267c88fc65299f2fd52c7dd4d74d2fbd1c6935622b47f4918fff63</originalsourceid><addsrcrecordid>eNpNj71OwzAURi0EEqWwM_oFUuzr_xFVtFSKBAPMlmPn0qKERHYW3r5Vm6HT-fQNRzqEPHO24tIY-wJGgBNudaZUN2QBXLHKMmdur_Y9eSjllzFtNbcLQj_DtKdjHpqu7Qs9_NGp7cchh47-5DDuyyO5w9CV9mnmknxv3r7W71X9sd2tX-sqCuamKnFQUgqhkgJtorUYtQLnEPD0RJOSTEYmwCbxqJ1QGqCRBqXjFhG1WBJ28cY8lJJb9GM-9CH_e878udDPhX4uFEev-EHb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Path problems in temporal graphs</title><source>ACM Digital Library Complete</source><creator>Wu, Huanhuan ; Cheng, James ; Huang, Silu ; Ke, Yiping ; Lu, Yi ; Xu, Yanyan</creator><creatorcontrib>Wu, Huanhuan ; Cheng, James ; Huang, Silu ; Ke, Yiping ; Lu, Yi ; Xu, Yanyan</creatorcontrib><description>Shortest path is a fundamental graph problem with numerous applications. However, the concept of classic shortest path is insufficient or even flawed in a temporal graph, as the temporal information determines the order of activities along any path. In this paper, we show the shortcomings of classic shortest path in a temporal graph, and study various concepts of "shortest" path for temporal graphs. Computing these temporal paths is challenging as subpaths of a "shortest" path may not be "shortest" in a temporal graph. We investigate properties of the temporal paths and propose efficient algorithms to compute them. We tested our algorithms on real world temporal graphs to verify their efficiency, and also show that temporal paths are essential for studying temporal graphs by comparing shortest paths in normal static graphs.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/2732939.2732945</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2014-05, Vol.7 (9), p.721-732</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-d12544335d5267c88fc65299f2fd52c7dd4d74d2fbd1c6935622b47f4918fff63</citedby><cites>FETCH-LOGICAL-c309t-d12544335d5267c88fc65299f2fd52c7dd4d74d2fbd1c6935622b47f4918fff63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wu, Huanhuan</creatorcontrib><creatorcontrib>Cheng, James</creatorcontrib><creatorcontrib>Huang, Silu</creatorcontrib><creatorcontrib>Ke, Yiping</creatorcontrib><creatorcontrib>Lu, Yi</creatorcontrib><creatorcontrib>Xu, Yanyan</creatorcontrib><title>Path problems in temporal graphs</title><title>Proceedings of the VLDB Endowment</title><description>Shortest path is a fundamental graph problem with numerous applications. However, the concept of classic shortest path is insufficient or even flawed in a temporal graph, as the temporal information determines the order of activities along any path. In this paper, we show the shortcomings of classic shortest path in a temporal graph, and study various concepts of "shortest" path for temporal graphs. Computing these temporal paths is challenging as subpaths of a "shortest" path may not be "shortest" in a temporal graph. We investigate properties of the temporal paths and propose efficient algorithms to compute them. We tested our algorithms on real world temporal graphs to verify their efficiency, and also show that temporal paths are essential for studying temporal graphs by comparing shortest paths in normal static graphs.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpNj71OwzAURi0EEqWwM_oFUuzr_xFVtFSKBAPMlmPn0qKERHYW3r5Vm6HT-fQNRzqEPHO24tIY-wJGgBNudaZUN2QBXLHKMmdur_Y9eSjllzFtNbcLQj_DtKdjHpqu7Qs9_NGp7cchh47-5DDuyyO5w9CV9mnmknxv3r7W71X9sd2tX-sqCuamKnFQUgqhkgJtorUYtQLnEPD0RJOSTEYmwCbxqJ1QGqCRBqXjFhG1WBJ28cY8lJJb9GM-9CH_e878udDPhX4uFEev-EHb</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Wu, Huanhuan</creator><creator>Cheng, James</creator><creator>Huang, Silu</creator><creator>Ke, Yiping</creator><creator>Lu, Yi</creator><creator>Xu, Yanyan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140501</creationdate><title>Path problems in temporal graphs</title><author>Wu, Huanhuan ; Cheng, James ; Huang, Silu ; Ke, Yiping ; Lu, Yi ; Xu, Yanyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-d12544335d5267c88fc65299f2fd52c7dd4d74d2fbd1c6935622b47f4918fff63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Huanhuan</creatorcontrib><creatorcontrib>Cheng, James</creatorcontrib><creatorcontrib>Huang, Silu</creatorcontrib><creatorcontrib>Ke, Yiping</creatorcontrib><creatorcontrib>Lu, Yi</creatorcontrib><creatorcontrib>Xu, Yanyan</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Huanhuan</au><au>Cheng, James</au><au>Huang, Silu</au><au>Ke, Yiping</au><au>Lu, Yi</au><au>Xu, Yanyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Path problems in temporal graphs</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>7</volume><issue>9</issue><spage>721</spage><epage>732</epage><pages>721-732</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>Shortest path is a fundamental graph problem with numerous applications. However, the concept of classic shortest path is insufficient or even flawed in a temporal graph, as the temporal information determines the order of activities along any path. In this paper, we show the shortcomings of classic shortest path in a temporal graph, and study various concepts of "shortest" path for temporal graphs. Computing these temporal paths is challenging as subpaths of a "shortest" path may not be "shortest" in a temporal graph. We investigate properties of the temporal paths and propose efficient algorithms to compute them. We tested our algorithms on real world temporal graphs to verify their efficiency, and also show that temporal paths are essential for studying temporal graphs by comparing shortest paths in normal static graphs.</abstract><doi>10.14778/2732939.2732945</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2150-8097
ispartof Proceedings of the VLDB Endowment, 2014-05, Vol.7 (9), p.721-732
issn 2150-8097
2150-8097
language eng
recordid cdi_crossref_primary_10_14778_2732939_2732945
source ACM Digital Library Complete
title Path problems in temporal graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A44%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Path%20problems%20in%20temporal%20graphs&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Wu,%20Huanhuan&rft.date=2014-05-01&rft.volume=7&rft.issue=9&rft.spage=721&rft.epage=732&rft.pages=721-732&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/2732939.2732945&rft_dat=%3Ccrossref%3E10_14778_2732939_2732945%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true