Path problems in temporal graphs

Shortest path is a fundamental graph problem with numerous applications. However, the concept of classic shortest path is insufficient or even flawed in a temporal graph, as the temporal information determines the order of activities along any path. In this paper, we show the shortcomings of classic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the VLDB Endowment 2014-05, Vol.7 (9), p.721-732
Hauptverfasser: Wu, Huanhuan, Cheng, James, Huang, Silu, Ke, Yiping, Lu, Yi, Xu, Yanyan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Shortest path is a fundamental graph problem with numerous applications. However, the concept of classic shortest path is insufficient or even flawed in a temporal graph, as the temporal information determines the order of activities along any path. In this paper, we show the shortcomings of classic shortest path in a temporal graph, and study various concepts of "shortest" path for temporal graphs. Computing these temporal paths is challenging as subpaths of a "shortest" path may not be "shortest" in a temporal graph. We investigate properties of the temporal paths and propose efficient algorithms to compute them. We tested our algorithms on real world temporal graphs to verify their efficiency, and also show that temporal paths are essential for studying temporal graphs by comparing shortest paths in normal static graphs.
ISSN:2150-8097
2150-8097
DOI:10.14778/2732939.2732945