Question selection for crowd entity resolution

We study the problem of enhancing Entity Resolution (ER) with the help of crowdsourcing. ER is the problem of clustering records that refer to the same real-world entity and can be an extremely difficult process for computer algorithms alone. For example, figuring out which images refer to the same...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the VLDB Endowment 2013-04, Vol.6 (6), p.349-360
Hauptverfasser: Whang, Steven Euijong, Lofgren, Peter, Garcia-Molina, Hector
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the problem of enhancing Entity Resolution (ER) with the help of crowdsourcing. ER is the problem of clustering records that refer to the same real-world entity and can be an extremely difficult process for computer algorithms alone. For example, figuring out which images refer to the same person can be a hard task for computers, but an easy one for humans. We study the problem of resolving records with crowdsourcing where we ask questions to humans in order to guide ER into producing accurate results. Since human work is costly, our goal is to ask as few questions as possible. We propose a probabilistic framework for ER that can be used to estimate how much ER accuracy we obtain by asking each question and select the best question with the highest expected accuracy. Computing the expected accuracy is #P-hard, so we propose approximation techniques for efficient computation. We evaluate our best question algorithms on real and synthetic datasets and demonstrate how we can obtain high ER accuracy while significantly reducing the number of questions asked to humans.
ISSN:2150-8097
2150-8097
DOI:10.14778/2536336.2536337