Ad-hoc data processing in the cloud
Ad-hoc data processing has proven to be a critical paradigm for Internet companies processing large volumes of unstructured data. However, the emergence of cloud-based computing, where storage and CPU are outsourced to multiple third-parties across the globe, implies large collections of highly dist...
Gespeichert in:
Veröffentlicht in: | Proceedings of the VLDB Endowment 2008-08, Vol.1 (2), p.1472-1475 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ad-hoc data processing has proven to be a critical paradigm for Internet companies processing large volumes of unstructured data. However, the emergence of cloud-based computing, where storage and CPU are outsourced to multiple third-parties across the globe, implies large collections of highly distributed and continuously evolving data. Our demonstration combines the power and simplicity of the MapReduce abstraction with a wide-scale distributed stream processor, Mortar. While our incremental MapReduce operators avoid data re-processing, the stream processor manages the placement and physical data flow of the operators across the wide area. We demonstrate a distributed web indexing engine against which users can submit and deploy continuous MapReduce jobs. A visualization component illustrates both the incremental indexing and index searches in real time. |
---|---|
ISSN: | 2150-8097 2150-8097 |
DOI: | 10.14778/1454159.1454204 |