О смешанном нагружении элементов конструкции с дефектом
В статье рассматривается задача определения напряженно-деформированного состояния в окрестности вершины трещины в случае смешанного нагружения (нормальный отрыв и поперечный сдвиг) в полном диапазоне смешанных форм деформирования в условиях плоского напряженного состояния. Для построения асимптотиче...
Gespeichert in:
Veröffentlicht in: | Vestnik Samarskogo gosudarstvennogo tehničeskogo universiteta. Seriâ Fiziko-matematičeskie nauki 2015, Vol.19 (2), p.358-381 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | rus |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | В статье рассматривается задача определения напряженно-деформированного состояния в окрестности вершины трещины в случае смешанного нагружения (нормальный отрыв и поперечный сдвиг) в полном диапазоне смешанных форм деформирования в условиях плоского напряженного состояния. Для построения асимптотического решения используется метод разложения по собственным функциям механических полей в окрестности вершины трещины. Показано, что проблема отыскания полей напряжений и деформаций в окрестности вершины трещины сводится к нелинейной задаче на собственные значения, где показатель степени расстояния от вершины трещины представляет собой собственное значение, а угловое распределение компонент тензора напряжений - собственные функции. Получено численное решение нелинейной задачи на собственные значения и найден весь спектр собственных значений. Найдены новые собственные значения, отличные от собственных значений классической задачи Хатчинсона-Райса-Розенгрена. Показано, что новое асимптотическое решение можно интерпретировать как автомодельно-промежуточную асимптотику поля напряжений на расстояниях, много меньших характерного линейного размера образца, но много больших характерного линейного размера области полностью поврежденного материала.
In the article the problem of determining the stress-strain state near the mixed-mode crack tip in a power-law material under plane stress conditions is considered. The eigenfunction method is used for the mixed-mode crack tip problem. It is shown that the eigenfunction expansion method results in the nonlinear eigenvalue problem. The numeric solution of the nonlinear eigenvalue problem formulated is obtained. The power of the distance from the crack tip is the eigenvalue of the nonlinear eigenvalue problem considered whereas the angular distributions of the stress components are the eigenfunctions. The new eigenvalues different from the eigenvalues of the Hutchinson-Rice-Rosengren are found. It is shown that the new asymptotic solution can be interpreted as the self-similar intermediate asymptotics of the stress field in the vicinity of the crack tip at distances which are very small compared to the crack length or the size of the specimen and at distances which are large compared to the length of the completely damaged zone. The developed method allows us to construct the geometry of the completely damaged zone in vicinity of the crack tip. |
---|---|
ISSN: | 1991-8615 2310-7081 |
DOI: | 10.14498/vsgtu1432 |