Geometry of equilibrium curves and surfaces for discrete anisotropic energy

In this paper, we propose piecewise linear constant anisotropic mean curvature (CAMC) curves and surfaces based on a variational characterization. These curves (resp. surfaces) are equilibrium for the anisotropic energy amongst continuous piecewise linear variations which preserve the boundary condi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JSIAM Letters 2022, Vol.14, pp.57-60
1. Verfasser: Jikumaru, Yoshiki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue
container_start_page 57
container_title JSIAM Letters
container_volume 14
creator Jikumaru, Yoshiki
description In this paper, we propose piecewise linear constant anisotropic mean curvature (CAMC) curves and surfaces based on a variational characterization. These curves (resp. surfaces) are equilibrium for the anisotropic energy amongst continuous piecewise linear variations which preserve the boundary conditions, the simplicial structures, and (in the non-minimal case) the area (resp. volume) to one side of the curves (resp. surfaces). Our discrete CAMC surfaces are a generalization of discrete CMC surfaces defined by the variational principle. We also show a stability result of discrete CAMC surfaces including the result for discrete CMC surfaces.
doi_str_mv 10.14495/jsiaml.14.57
format Article
fullrecord <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_14495_jsiaml_14_57</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_jsiaml_14_0_14_57_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2567-2833187f829a61164ccc340f78f79cd5eb1f32e1b8fd43be4308a9a73d3c6b5f3</originalsourceid><addsrcrecordid>eNpNkMFOwzAMhiMEEtPYkXteoCNpmiY9ITTBQEziAucqdZ2RqV2H0yLt7akoqjjZn_7PPvyM3UqxlllW6LtDDK5tRlhrc8EW0lqViFyay3kXxTVbxRgqIUWqRZGqBXvdYtdiT2feeY5fQ2hCRWFoOQz0jZG7Y83jQN7BCL4jXocIhD2OSYhdT90pAMcj0v58w668ayKu_uaSfTw9vm-ek93b9mXzsEsg1blJUquUtMbbtHC5lHkGACoT3lhvCqg1VtKrFGVlfZ2pCjMlrCucUbWCvNJeLVky_QXqYiT05YlC6-hcSlH-llFOZYxQajP695N_iL3b42w76gM0-E8W08WcwKejEo_qB7GJbEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Geometry of equilibrium curves and surfaces for discrete anisotropic energy</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jikumaru, Yoshiki</creator><creatorcontrib>Jikumaru, Yoshiki</creatorcontrib><description>In this paper, we propose piecewise linear constant anisotropic mean curvature (CAMC) curves and surfaces based on a variational characterization. These curves (resp. surfaces) are equilibrium for the anisotropic energy amongst continuous piecewise linear variations which preserve the boundary conditions, the simplicial structures, and (in the non-minimal case) the area (resp. volume) to one side of the curves (resp. surfaces). Our discrete CAMC surfaces are a generalization of discrete CMC surfaces defined by the variational principle. We also show a stability result of discrete CAMC surfaces including the result for discrete CMC surfaces.</description><identifier>ISSN: 1883-0609</identifier><identifier>EISSN: 1883-0617</identifier><identifier>DOI: 10.14495/jsiaml.14.57</identifier><language>eng</language><publisher>The Japan Society for Industrial and Applied Mathematics</publisher><subject>anisotropic mean curvature ; anisotropic surface energy ; discrete surface ; first variation ; stability</subject><ispartof>JSIAM Letters, 2022, Vol.14, pp.57-60</ispartof><rights>2022, The Japan Society for Industrial and Applied Mathematics</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2567-2833187f829a61164ccc340f78f79cd5eb1f32e1b8fd43be4308a9a73d3c6b5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1876,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Jikumaru, Yoshiki</creatorcontrib><title>Geometry of equilibrium curves and surfaces for discrete anisotropic energy</title><title>JSIAM Letters</title><addtitle>JSIAM Letters</addtitle><description>In this paper, we propose piecewise linear constant anisotropic mean curvature (CAMC) curves and surfaces based on a variational characterization. These curves (resp. surfaces) are equilibrium for the anisotropic energy amongst continuous piecewise linear variations which preserve the boundary conditions, the simplicial structures, and (in the non-minimal case) the area (resp. volume) to one side of the curves (resp. surfaces). Our discrete CAMC surfaces are a generalization of discrete CMC surfaces defined by the variational principle. We also show a stability result of discrete CAMC surfaces including the result for discrete CMC surfaces.</description><subject>anisotropic mean curvature</subject><subject>anisotropic surface energy</subject><subject>discrete surface</subject><subject>first variation</subject><subject>stability</subject><issn>1883-0609</issn><issn>1883-0617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkMFOwzAMhiMEEtPYkXteoCNpmiY9ITTBQEziAucqdZ2RqV2H0yLt7akoqjjZn_7PPvyM3UqxlllW6LtDDK5tRlhrc8EW0lqViFyay3kXxTVbxRgqIUWqRZGqBXvdYtdiT2feeY5fQ2hCRWFoOQz0jZG7Y83jQN7BCL4jXocIhD2OSYhdT90pAMcj0v58w668ayKu_uaSfTw9vm-ek93b9mXzsEsg1blJUquUtMbbtHC5lHkGACoT3lhvCqg1VtKrFGVlfZ2pCjMlrCucUbWCvNJeLVky_QXqYiT05YlC6-hcSlH-llFOZYxQajP695N_iL3b42w76gM0-E8W08WcwKejEo_qB7GJbEc</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Jikumaru, Yoshiki</creator><general>The Japan Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>Geometry of equilibrium curves and surfaces for discrete anisotropic energy</title><author>Jikumaru, Yoshiki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2567-2833187f829a61164ccc340f78f79cd5eb1f32e1b8fd43be4308a9a73d3c6b5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>anisotropic mean curvature</topic><topic>anisotropic surface energy</topic><topic>discrete surface</topic><topic>first variation</topic><topic>stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Jikumaru, Yoshiki</creatorcontrib><collection>CrossRef</collection><jtitle>JSIAM Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jikumaru, Yoshiki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometry of equilibrium curves and surfaces for discrete anisotropic energy</atitle><jtitle>JSIAM Letters</jtitle><addtitle>JSIAM Letters</addtitle><date>2022</date><risdate>2022</risdate><volume>14</volume><spage>57</spage><epage>60</epage><pages>57-60</pages><issn>1883-0609</issn><eissn>1883-0617</eissn><abstract>In this paper, we propose piecewise linear constant anisotropic mean curvature (CAMC) curves and surfaces based on a variational characterization. These curves (resp. surfaces) are equilibrium for the anisotropic energy amongst continuous piecewise linear variations which preserve the boundary conditions, the simplicial structures, and (in the non-minimal case) the area (resp. volume) to one side of the curves (resp. surfaces). Our discrete CAMC surfaces are a generalization of discrete CMC surfaces defined by the variational principle. We also show a stability result of discrete CAMC surfaces including the result for discrete CMC surfaces.</abstract><pub>The Japan Society for Industrial and Applied Mathematics</pub><doi>10.14495/jsiaml.14.57</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1883-0609
ispartof JSIAM Letters, 2022, Vol.14, pp.57-60
issn 1883-0609
1883-0617
language eng
recordid cdi_crossref_primary_10_14495_jsiaml_14_57
source J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects anisotropic mean curvature
anisotropic surface energy
discrete surface
first variation
stability
title Geometry of equilibrium curves and surfaces for discrete anisotropic energy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A21%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometry%20of%20equilibrium%20curves%20and%20surfaces%20for%20discrete%20anisotropic%20energy&rft.jtitle=JSIAM%20Letters&rft.au=Jikumaru,%20Yoshiki&rft.date=2022&rft.volume=14&rft.spage=57&rft.epage=60&rft.pages=57-60&rft.issn=1883-0609&rft.eissn=1883-0617&rft_id=info:doi/10.14495/jsiaml.14.57&rft_dat=%3Cjstage_cross%3Earticle_jsiaml_14_0_14_57_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true