Geometry of equilibrium curves and surfaces for discrete anisotropic energy
In this paper, we propose piecewise linear constant anisotropic mean curvature (CAMC) curves and surfaces based on a variational characterization. These curves (resp. surfaces) are equilibrium for the anisotropic energy amongst continuous piecewise linear variations which preserve the boundary condi...
Gespeichert in:
Veröffentlicht in: | JSIAM Letters 2022, Vol.14, pp.57-60 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose piecewise linear constant anisotropic mean curvature (CAMC) curves and surfaces based on a variational characterization. These curves (resp. surfaces) are equilibrium for the anisotropic energy amongst continuous piecewise linear variations which preserve the boundary conditions, the simplicial structures, and (in the non-minimal case) the area (resp. volume) to one side of the curves (resp. surfaces). Our discrete CAMC surfaces are a generalization of discrete CMC surfaces defined by the variational principle. We also show a stability result of discrete CAMC surfaces including the result for discrete CMC surfaces. |
---|---|
ISSN: | 1883-0609 1883-0617 |
DOI: | 10.14495/jsiaml.14.57 |