Geometry of equilibrium curves and surfaces for discrete anisotropic energy

In this paper, we propose piecewise linear constant anisotropic mean curvature (CAMC) curves and surfaces based on a variational characterization. These curves (resp. surfaces) are equilibrium for the anisotropic energy amongst continuous piecewise linear variations which preserve the boundary condi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JSIAM Letters 2022, Vol.14, pp.57-60
1. Verfasser: Jikumaru, Yoshiki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose piecewise linear constant anisotropic mean curvature (CAMC) curves and surfaces based on a variational characterization. These curves (resp. surfaces) are equilibrium for the anisotropic energy amongst continuous piecewise linear variations which preserve the boundary conditions, the simplicial structures, and (in the non-minimal case) the area (resp. volume) to one side of the curves (resp. surfaces). Our discrete CAMC surfaces are a generalization of discrete CMC surfaces defined by the variational principle. We also show a stability result of discrete CAMC surfaces including the result for discrete CMC surfaces.
ISSN:1883-0609
1883-0617
DOI:10.14495/jsiaml.14.57