Degradation of Mononitrotoluene by Electrochemical Method

Present paper deals with studies on the degradation of Mononitrotoluene (MNT) by electrochemical method. The Electro-Fenton and Electro-Peroxide methods are explored to degrade MNT upto its drain discharge limit of 1 ppm. Effects of some important parameters which ultimately decide the rate of degra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Defense science journal 2021-07, Vol.71 (4), p.456-461
Hauptverfasser: Kumar, Ratanesh, Wagh, Pratap Baburao, Ingale, Sanjay Vishwasrao, Joshi, K D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Present paper deals with studies on the degradation of Mononitrotoluene (MNT) by electrochemical method. The Electro-Fenton and Electro-Peroxide methods are explored to degrade MNT upto its drain discharge limit of 1 ppm. Effects of some important parameters which ultimately decide the rate of degradation of MNT viz. oxidizer, pH, catalyst and voltage etc. have been critically studied. The detailed studies have been carried out which includes variation in different parameters viz. pH from acidic range to basic range, catalyst concentration from 10 ppm to 50 ppm, Oxidizer concentration from 5 mM to 40 mM and potential across electrodes from 4 V to 24 V for efficient degradation of MNT. It is observed that optimised values of precursors viz. catalyst (FeSO4 ) concentration of 40 ppm, pH of 3, potential across electrodes of 12V and oxidizer (H2 O2 ) concentration of 25 mM; Electro-Fenton reaction has been carried out to degrade 50 ppm MNT solution up to its drain discharge limit of 1 ppm and on other hand under Electro-Peroxide reaction results in degradation of MNT from 50 ppm to 12 ppm. The comparative studies of Electro-Fenton and Electro-Peroxide reactions have been carried out for MNT solution and the treated solution has been characterised by using UV-Visible spectrophotometer and Total Organic Carbon (TOC) analyzer and the obtained data on MNT effluent studies may be applicable to explore the efficient mineralisation of 2-Methyl-1, 3, 5-trinitrobenzene effluent. The observed results have been interpreted and reported in the present study.
ISSN:0011-748X
0976-464X
DOI:10.14429/dsj.71.16376