Modeling of rose coco beans using twenty four points optimum second order rotatable design
The response surface methodology (RSM) is a collection of mathematical and statistical techniques useful for the modeling and analysis of problems in which a response of interest is influenced by several variables, and the objective is to optimize the response. The objective of the study was to mode...
Gespeichert in:
Veröffentlicht in: | International journal of advanced statistics and probability 2017-11, Vol.5 (2), p.96 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The response surface methodology (RSM) is a collection of mathematical and statistical techniques useful for the modeling and analysis of problems in which a response of interest is influenced by several variables, and the objective is to optimize the response. The objective of the study was to model the rose coco beans (Phaseolus vulgaris) through an existing A-optimum and D-efficient second order rotatable design of twenty four points in three dimensions in a greenhouse setting using three inorganic fertilizers, namely, nitrogen, phosphorus and potassium. Thus, the objective of the study was accomplished using the calculus optimum value of the free/letter parameter f=1.1072569. This was done by estimating the parameters via least square's techniques, by making available for the yield response of rose coco beans at calculus optimum value design for the first time. The results showed that, the three factors: nitrogen, phosphorus, and potassium contributed significantly on the yield of rose coco beans (p |
---|---|
ISSN: | 2307-9045 2307-9045 |
DOI: | 10.14419/ijasp.v5i2.8445 |