2 - Variable AQCQ - Functional equation

In this paper, the authors obtain the general solution and generalized Ulam - Hyers stability of a 2 - variable AQCQ functional equation \begin{align*} g(x+2y, u+2v)+g(x-2y, u-2v)& = 4[g(x+y, u+v) + g(x-y, u-v)]- 6g(x,u)\notag\\ &~~+g(2y,2v)+g(-2y,-2v)-4g(y,v)-4g(-y,-v) \end{align*} using Hy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced mathematical sciences 2015-05, Vol.3 (1), p.65
Hauptverfasser: Arunkuma, M., Hema Latha, S., Sathya, E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the authors obtain the general solution and generalized Ulam - Hyers stability of a 2 - variable AQCQ functional equation \begin{align*} g(x+2y, u+2v)+g(x-2y, u-2v)& = 4[g(x+y, u+v) + g(x-y, u-v)]- 6g(x,u)\notag\\ &~~+g(2y,2v)+g(-2y,-2v)-4g(y,v)-4g(-y,-v) \end{align*} using Hyers direct method. Counter examples for non stability is also discussed.
ISSN:2307-454X
2307-454X
DOI:10.14419/ijams.v3i1.4401