2 - Variable AQCQ - Functional equation
In this paper, the authors obtain the general solution and generalized Ulam - Hyers stability of a 2 - variable AQCQ functional equation \begin{align*} g(x+2y, u+2v)+g(x-2y, u-2v)& = 4[g(x+y, u+v) + g(x-y, u-v)]- 6g(x,u)\notag\\ &~~+g(2y,2v)+g(-2y,-2v)-4g(y,v)-4g(-y,-v) \end{align*} using Hy...
Gespeichert in:
Veröffentlicht in: | International journal of advanced mathematical sciences 2015-05, Vol.3 (1), p.65 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the authors obtain the general solution and generalized Ulam - Hyers stability of a 2 - variable AQCQ functional equation
\begin{align*}
g(x+2y, u+2v)+g(x-2y, u-2v)& = 4[g(x+y, u+v) + g(x-y, u-v)]- 6g(x,u)\notag\\
&~~+g(2y,2v)+g(-2y,-2v)-4g(y,v)-4g(-y,-v)
\end{align*}
using Hyers direct method. Counter examples for non stability is also discussed. |
---|---|
ISSN: | 2307-454X 2307-454X |
DOI: | 10.14419/ijams.v3i1.4401 |