On Properties of meromorphic solutions of difference Painlevé I and II equation
In this paper, we investigate some properties of finite order transcendental meromorphic solutions of difference Painlev \(\)\acute{e}\) I and II equations, and obtain precise estimations of exponents of convergence of poles of difference \(\)\Delta w(z)=w(z+1)-w(z)\) and divided difference \(\)\fra...
Gespeichert in:
Veröffentlicht in: | Global journal of mathematical analysis (Dubai) 2017-06, Vol.5 (2), p.37-42 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we investigate some properties of finite order transcendental meromorphic solutions of difference Painlev \(\)\acute{e}\) I and II equations, and obtain precise estimations of exponents of convergence of poles of difference \(\)\Delta w(z)=w(z+1)-w(z)\) and divided difference \(\)\frac{\Delta w(z)}{w(z)}\), and of fixed points of \(\)w(z+\eta)$ ($\eta\in \mathbb{C}\setminus\{0\}\)). |
---|---|
ISSN: | 2307-9002 2307-9002 |
DOI: | 10.14419/gjma.v5i2.7703 |