On Properties of meromorphic solutions of difference Painlevé I and II equation

In this paper, we investigate some properties of finite order transcendental meromorphic solutions of difference Painlev \(\)\acute{e}\) I and II equations, and obtain precise estimations of exponents of convergence of poles of difference \(\)\Delta w(z)=w(z+1)-w(z)\) and divided difference \(\)\fra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global journal of mathematical analysis (Dubai) 2017-06, Vol.5 (2), p.37-42
Hauptverfasser: Xue, Weimin, Teng, Yanmei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate some properties of finite order transcendental meromorphic solutions of difference Painlev \(\)\acute{e}\) I and II equations, and obtain precise estimations of exponents of convergence of poles of difference \(\)\Delta w(z)=w(z+1)-w(z)\) and divided difference \(\)\frac{\Delta w(z)}{w(z)}\), and of fixed points of \(\)w(z+\eta)$ ($\eta\in \mathbb{C}\setminus\{0\}\)).
ISSN:2307-9002
2307-9002
DOI:10.14419/gjma.v5i2.7703