Demonstrating UAV-Acquired Real-Time Thermal Data over Fires

Project FiRE (First Response Experiment), a disaster management technology demonstration, was performed in 2001. The experiment demonstrated the use of a thermal multispectral scanning imager, integrated on an unmanned aerial vehicle (UAV), a satellite uplink/downlink image data telemetry system, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photogrammetric engineering and remote sensing 2003-04, Vol.69 (4), p.391-402
Hauptverfasser: Ambrosia, Vincent G., Wegener, Steven S., Sullivan, Donald V., Buechel, Sally W., Dunagan, Stephen E., Brass, James A., Stoneburner, Jay, Schoenung, Susan M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Project FiRE (First Response Experiment), a disaster management technology demonstration, was performed in 2001. The experiment demonstrated the use of a thermal multispectral scanning imager, integrated on an unmanned aerial vehicle (UAV), a satellite uplink/downlink image data telemetry system, and near-real-time geo-rectification of the resultant imagery for data distribution via the Internet to disaster managers. The FiRE demonstration provided geo-corrected image data over a controlled burn to a fire management community in near-real-time by means of the melding of new technologies. The use of the UAV demonstrated remotely piloted flight (thereby reducing the potential for loss of human life during hazardous missions), and the ability to "linger and stare" over the fire for extended periods of time (beyond the capabilities of human-pilot endurance). Improvements in a high-temperature calibrated thermal imaging scanner allowed "remote" operations from a UAV and provided real-time accurate fire information collection over a controlled burn. Improved bit-rate capacity telemetry capabilities increased the amount, structure, and information content of the image data relayed to the ground. The integration of precision navigation instrumentation allowed improved accuracies in geo-rectification of the resultant imagery, easing data ingestion and overlay in a GIS framework. We present a discussion of the feasibility of utilizing new platforms, improved sensor configurations, improved telemetry, and new geo-correction software to facilitate wildfire management and mitigation strategies.
ISSN:0099-1112
2374-8079
DOI:10.14358/PERS.69.4.391