Antimicrobial efficacy of a new tri-antibiotic combination against resistant endodontic pathogens: An in-vitro study
Background: Removal of all the pathogenic bacteria from the root canal system is of prime importance for the success of endodontic therapy. Objective: The study aimed to determine the antimicrobial efficacy of three antibiotics and their new combination against selected endodontic pathogens. Methods...
Gespeichert in:
Veröffentlicht in: | Brazilian dental science 2020-09, Vol.23 (4), p.8 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: Removal of all the pathogenic bacteria from the root canal system is of prime importance for the success of endodontic therapy. Objective: The study aimed to determine the antimicrobial efficacy of three antibiotics and their new combination against selected endodontic pathogens. Methods: In this in-vitro study, we used bacterial strains associated with the refractory endodontic condition and determined MIC and MBC of Clindamycin (C), Metronidazole (M), Doxycycline (D) as well as their combination CMD. We cultured Candida Albicans, Pseudomonas Aeruginosa, Escherichia Coli, Enterococcus Faecalis, Streptococcus Mutans, Bacillus Subtilis subsp. spizizenii, Actinomyces Actinomycetemcomitans on selective culture media. We analyzed the data using paired 't' test, one-way ANOVA, and Tuckey's HSD post hoc test. Results: Clindamycin inhibited the growth of C. Albicans (90%) and S. Mutans (90%) significantly and P. Aeruginosa, E. Coli, E. Faecalis, B. Subtilis, and A. Actinomycetemcomitans were resistant to it. Metronidazole did not inhibit any of the bacteria. Doxycycline inhibited C. Albicans (90%), P. Aeruginosa (90%), and S. Mutans (90%) significantly while E. Coli, E. Faecalis, B. Subtilis, and A. Actinomycetemcomitans were resistant to it. The combination of CMD inhibited all the microbes significantly. However, at bactericidal concentrations of CMD, E. Faecalis (p = 0.024), B. Subtilis (p = 0.021) and A. Actinomycetemcomitans (p = 0.041) were eliminated significantly, while C. Albicans (p = 0.164), P. Aeruginosa (p = 0.489), E. Coli (p = 0.106) and S. Mutans (p = 0.121) showed resistance. Conclusion: Combination CMD can be used against resistant endodontic pathogens to achieve predictable endodontic results.KEYWORDSAntimicrobial agents; Clindamycin; Doxycycline; Metronidazole; Root canal therapy. |
---|---|
ISSN: | 2178-6011 2178-6011 |
DOI: | 10.14295/bds.2021.v24i1.2186 |