COMPUTER SIMULATION OF THE POROUS STRUCTURE OF HYDROLYSIS LIGNIN AND ITS HARD COMPO-SITES WITH COMPONENTS OF OIL FUELS AND WATER

A fragment of the supramolecular structure of lignin was simulated by cross-linking the C546H600O196 structural units along the corresponding CH–bonds followed by geometric optimization by the Polac-Ribier’s conjugate gradient method in the MNDO field of the HyperChem 8.0 software and ChemBio 13.0....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Himiâ rastitelʹnogo syrʹâ 2019-03 (1), p.73-84
Hauptverfasser: Савицкая (Savitskaya), Татьяна (Tat'yana) Александровна (Aleksandrovna), Резников (Reznikov), Иван (Ivan) Вадимович (Vadimovich), Гриншпан (Grinshpan), Дмитрий (Dmitriy) Давидович (Davidovich)
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A fragment of the supramolecular structure of lignin was simulated by cross-linking the C546H600O196 structural units along the corresponding CH–bonds followed by geometric optimization by the Polac-Ribier’s conjugate gradient method in the MNDO field of the HyperChem 8.0 software and ChemBio 13.0. The pore structure of lignin was simulated as well with optimization by the molecular mechanic’s method according to the MM2 Norman-Alinger’s algorithm taking into account the dipole-dipole interaction. Сoumaric alcohol molecule was a building block. The calculation of the energy parameters of lignin’s pore structure filling by the molecules of organic substances and water were carried out. It included a search for a global minimum of the potential energy by the molecular mechanic’s method according to the MM2 program and by the molecular dynamics method. The calculation had its basis in the “closed” pores existence in lignin. The calculated values of pore volume and specific surface area correlate with the experimental data. The way of prediction of organic substances sorption activity to lignin was proposed. This is evident from their calculated hydrophobicity parameter that correlates with the interaction energy of the molecules in the lignin pore.
ISSN:1029-5151
1029-5143
DOI:10.14258/jcprm.2019013768