New insights into the existing image encryption algorithms based on DNA coding

Because a DNA nucleotide sequence has the characteristics of large storage capacity, high parallelism, and low energy consumption, DNA cryptography is favored by information security researchers. Image encryption algorithms based on DNA coding have become a research hotspot in the field of image enc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-10, Vol.15 (10), p.e0241184-e0241184, Article 0241184
Hauptverfasser: Xue, Xianglian, Zhou, Dongsheng, Zhou, Changjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Because a DNA nucleotide sequence has the characteristics of large storage capacity, high parallelism, and low energy consumption, DNA cryptography is favored by information security researchers. Image encryption algorithms based on DNA coding have become a research hotspot in the field of image encryption and security. In this study, based on a comprehensive review of the existing studies and their results, we present new insights into the existing image encryption algorithms based on DNA coding. First, the existing algorithms were summarized and classified into five types, depending on the type of DNA coding: DNA fixed coding, DNA dynamic coding, different types of base complement operation, different DNA sequence algebraic operations, and combinations of multiple DNA operations. Second, we analyzed and studied each classification algorithm using simulation and obtained their advantages and disadvantages. Third, the DNA coding mechanisms, DNA algebraic operations, and DNA algebraic combination operations were compared and discussed. Then, a new scheme was proposed by combining the optimal coding mechanism with the optimal DNA coding operation. Finally, we revealed the shortcomings of the existing studies and the future direction for improving image encryption methods based on DNA coding.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0241184