Enhanced spin Hall effect of reflected light with guided-wave surface plasmon resonance

The photonic spin Hall effect(SHE) has been intensively studied and widely applied, especially in spin photonics.However, the SHE is weak and is difficult to detect directly. In this paper, we propose a method to enhance SHE with the guided-wave surface-plasmon resonance(SPR). By covering a dielectr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photonics research (Washington, DC) DC), 2017-10, Vol.5 (5), p.467-472
Hauptverfasser: Xiang, Yuanjiang, Jiang, Xing, You, Qi, Guo, Jun, Dai, Xiaoyu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The photonic spin Hall effect(SHE) has been intensively studied and widely applied, especially in spin photonics.However, the SHE is weak and is difficult to detect directly. In this paper, we propose a method to enhance SHE with the guided-wave surface-plasmon resonance(SPR). By covering a dielectric with high refractive index on the surface of silver film, the photonic SHE can be greatly enhanced, and a giant transverse shift of horizontal polarization state is observed due to the evanescent field enhancement near the interface at the top dielectric layer and air. The maximum transverse shift of the horizontal polarization state with 11.5 μm is obtained when the thickness of Si film is optimum. There is at least an order of magnitude enhancement in contrast with the transverse shift in the conventional SPR configuration. Our research is important for providing an effective way to improve the photonic SHE and may offer the opportunity to characterize the parameters of the dielectric layer with the help of weak measurements and development of sensors based on the photonic SHE.
ISSN:2327-9125
2327-9125
DOI:10.1364/PRJ.5.000467