Noninvasive high-resolution deep-brain photoacoustic imaging with a negatively focused fiber-laser ultrasound transducer
Noninvasive high-resolution deep-brain imaging is essential to fundamental cognitive process study and neuroprotective drugs development. Although optical microscopes can resolve fine biological structures with good contrast without exposure to ionizing radiation or a strong magnetic field, the opti...
Gespeichert in:
Veröffentlicht in: | Photonics research (Washington, DC) DC), 2024-12, Vol.12 (12), p.2996 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Noninvasive high-resolution deep-brain imaging is essential to fundamental cognitive process study and neuroprotective drugs development. Although optical microscopes can resolve fine biological structures with good contrast without exposure to ionizing radiation or a strong magnetic field, the optical scattering limits the penetration depth and hinders its capability for deep-brain imaging. Here, in vivo high-resolution imaging of the whole mouse brain is demonstrated by using a photoacoustic computed tomography system with a negatively focused fiber-laser ultrasound transducer. By leveraging the high flexibility and low bending loss of the optical fiber, a rationally designed negatively focused fiber laser cavity exhibits a low detection limit down to 5.4 Pa and a broad view angle of ∼120 deg , enabling mouse brain imaging with a penetration larger than 7 mm and a nearly isotropic spatial resolution of ∼130 μm . In addition, the negative curvature of the fiber laser reduces the working distance, which facilitates the development of a compact and portable linear scanning imaging system. In vivo imaging of a mouse model with intracerebral hemorrhage is also showcased to demonstrate its capability for potential biomedical and clinical applications. With high spatial resolution and large tissue penetration, the system may provide a noninvasive, user-friendly, and high-performance imaging solution for biomedical research and preclinical/clinical diagnosis. |
---|---|
ISSN: | 2327-9125 2327-9125 |
DOI: | 10.1364/PRJ.534972 |