High-efficiency terahertz surface plasmon metacoupler empowered by bilayer bright–dark mode coupling
Conversion from free-space waves to surface plasmons has been well studied as a key aspect of plasmonics. In particular, efficient coupling and propagation of surface plasmons via phase gradient metasurfaces are of great current research interest. Hereby, we demonstrate a terahertz metacoupler based...
Gespeichert in:
Veröffentlicht in: | Photonics research (Washington, DC) DC), 2024-11, Vol.12 (11), p.2495 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Conversion from free-space waves to surface plasmons has been well studied as a key aspect of plasmonics. In particular, efficient coupling and propagation of surface plasmons via phase gradient metasurfaces are of great current research interest. Hereby, we demonstrate a terahertz metacoupler based on a bilayer bright–dark mode coupling structure attaining near-perfect conversion efficiency (exceeding 95%) without considering absorption loss of the materials and maintaining a high conversion level even when the area of the excitation region changes. To validate our design, a fabricated metacoupler was assessed by scanning near-field terahertz microscopy. Our findings could pave the way for developing high-performance plasmonic devices encompassing ultra-thin and compact functional devices for a diverse range of applications, especially within the realm of high-speed terahertz communications. |
---|---|
ISSN: | 2327-9125 2327-9125 |
DOI: | 10.1364/PRJ.525303 |