Realizing transmitted metasurface cloak by a tandem neural network
Being invisible at will has been a long-standing dream for centuries, epitomized by numerous legends; humans have never stopped their exploration steps to realize this dream. Recent years have witnessed a breakthrough in this search due to the advent of transformation optics, metamaterials, and meta...
Gespeichert in:
Veröffentlicht in: | Photonics research (Washington, DC) DC), 2021-05, Vol.9 (5), p.B229 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Being invisible at will has been a long-standing dream for centuries, epitomized by numerous legends; humans have never stopped their exploration steps to realize this dream. Recent years have witnessed a breakthrough in this search due to the advent of transformation optics, metamaterials, and metasurfaces. However, the previous metasurface cloaks typically work in a reflection manner that relies on a high-reflection background, thus limiting the applications. Here, we propose an easy yet viable approach to realize the transmitted metasurface cloak, just composed of two planar metasurfaces to hide an object inside, such as a cat. To tackle the hard-to-converge issue caused by the nonuniqueness phenomenon, we deploy a tandem neural network (T-NN) to efficiently streamline the inverse design. Once pretrained, the T-NN can work for a customer-desired electromagnetic response in one single forward computation, saving a great amount of time. Our work opens a new avenue to realize a transparent invisibility cloak, and the tandem-NN can also inspire the inverse design of other metamaterials and photonics. |
---|---|
ISSN: | 2327-9125 2327-9125 |
DOI: | 10.1364/PRJ.418445 |