Large-scale optical phased array using a low-power multi-pass silicon photonic platform

Optical phased arrays are a promising beam-steering technology for ultra-small solid-state lidar and free-space communication systems. Long-range, high-performance arrays require a large beam emission area densely packed with thousands of actively phase-controlled, power-hungry light emitting elemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optica 2020-01, Vol.7 (1), p.3
Hauptverfasser: Miller, Steven A., Chang, You-Chia, Phare, Christopher T., Shin, Min Chul, Zadka, Moshe, Roberts, Samantha P., Stern, Brian, Ji, Xingchen, Mohanty, Aseema, Jimenez Gordillo, Oscar A., Dave, Utsav D., Lipson, Michal
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 3
container_title Optica
container_volume 7
creator Miller, Steven A.
Chang, You-Chia
Phare, Christopher T.
Shin, Min Chul
Zadka, Moshe
Roberts, Samantha P.
Stern, Brian
Ji, Xingchen
Mohanty, Aseema
Jimenez Gordillo, Oscar A.
Dave, Utsav D.
Lipson, Michal
description Optical phased arrays are a promising beam-steering technology for ultra-small solid-state lidar and free-space communication systems. Long-range, high-performance arrays require a large beam emission area densely packed with thousands of actively phase-controlled, power-hungry light emitting elements. To date, such large-scale phased arrays have been impossible to realize since current demonstrated technologies would operate at untenable electrical power levels. Here we show a multi-pass photonic platform integrated into a large-scale phased array that lowers phase shifter power consumption by nearly 9 times. The multi-pass structure decreases the power consumption of a thermo-optic phase shifter to a P π of 1.7 m W / π without sacrificing speed or optical bandwidth. Using this platform, we demonstrate a silicon photonic phased array containing 512 actively controlled elements, consuming only 1.9 W of power while performing 2D beam steering over a 70 ∘ × 6 ∘ field of view. Our results demonstrate a path forward to building scalable phased arrays containing thousands of active elements.
doi_str_mv 10.1364/OPTICA.7.000003
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1364_OPTICA_7_000003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1364_OPTICA_7_000003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-80a452f87e75462e350c4aff292a65d486911c6f2ac40b71d399dbbf066840ef3</originalsourceid><addsrcrecordid>eNpNkMtqwzAQRUVpoSHNulv9gBy9LNvLEvoCQ7pI6VKMZSlVsS0jOYT8fR3cRWczZ3HvMByEHhnNmFByu_84vO-esiKj1xE3aMWFkITnQt3-43u0SelnTjAhaV7RFfqqIR4tSQY6i8M4-Rnw-A3JthhihAs-JT8cMeAunMkYzjbi_tRNnoyQEk6-8yYMcyNMYfAGjx1MLsT-Ad056JLd_O01-nx5PuzeSL1_nT-tiRGVnEhJQebclYUtcqm4FTk1EpzjFQeVt7JUFWNGOQ5G0qZgraiqtmkcVaqU1DqxRtvlrokhpWidHqPvIV40o_qqRi9qdKEXNeIXKGVXqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Large-scale optical phased array using a low-power multi-pass silicon photonic platform</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Miller, Steven A. ; Chang, You-Chia ; Phare, Christopher T. ; Shin, Min Chul ; Zadka, Moshe ; Roberts, Samantha P. ; Stern, Brian ; Ji, Xingchen ; Mohanty, Aseema ; Jimenez Gordillo, Oscar A. ; Dave, Utsav D. ; Lipson, Michal</creator><creatorcontrib>Miller, Steven A. ; Chang, You-Chia ; Phare, Christopher T. ; Shin, Min Chul ; Zadka, Moshe ; Roberts, Samantha P. ; Stern, Brian ; Ji, Xingchen ; Mohanty, Aseema ; Jimenez Gordillo, Oscar A. ; Dave, Utsav D. ; Lipson, Michal</creatorcontrib><description>Optical phased arrays are a promising beam-steering technology for ultra-small solid-state lidar and free-space communication systems. Long-range, high-performance arrays require a large beam emission area densely packed with thousands of actively phase-controlled, power-hungry light emitting elements. To date, such large-scale phased arrays have been impossible to realize since current demonstrated technologies would operate at untenable electrical power levels. Here we show a multi-pass photonic platform integrated into a large-scale phased array that lowers phase shifter power consumption by nearly 9 times. The multi-pass structure decreases the power consumption of a thermo-optic phase shifter to a P π of 1.7 m W / π without sacrificing speed or optical bandwidth. Using this platform, we demonstrate a silicon photonic phased array containing 512 actively controlled elements, consuming only 1.9 W of power while performing 2D beam steering over a 70 ∘ × 6 ∘ field of view. Our results demonstrate a path forward to building scalable phased arrays containing thousands of active elements.</description><identifier>ISSN: 2334-2536</identifier><identifier>EISSN: 2334-2536</identifier><identifier>DOI: 10.1364/OPTICA.7.000003</identifier><language>eng</language><ispartof>Optica, 2020-01, Vol.7 (1), p.3</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-80a452f87e75462e350c4aff292a65d486911c6f2ac40b71d399dbbf066840ef3</citedby><cites>FETCH-LOGICAL-c394t-80a452f87e75462e350c4aff292a65d486911c6f2ac40b71d399dbbf066840ef3</cites><orcidid>0000-0002-3296-2357 ; 0000-0002-0284-0818 ; 0000-0003-2193-0082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Miller, Steven A.</creatorcontrib><creatorcontrib>Chang, You-Chia</creatorcontrib><creatorcontrib>Phare, Christopher T.</creatorcontrib><creatorcontrib>Shin, Min Chul</creatorcontrib><creatorcontrib>Zadka, Moshe</creatorcontrib><creatorcontrib>Roberts, Samantha P.</creatorcontrib><creatorcontrib>Stern, Brian</creatorcontrib><creatorcontrib>Ji, Xingchen</creatorcontrib><creatorcontrib>Mohanty, Aseema</creatorcontrib><creatorcontrib>Jimenez Gordillo, Oscar A.</creatorcontrib><creatorcontrib>Dave, Utsav D.</creatorcontrib><creatorcontrib>Lipson, Michal</creatorcontrib><title>Large-scale optical phased array using a low-power multi-pass silicon photonic platform</title><title>Optica</title><description>Optical phased arrays are a promising beam-steering technology for ultra-small solid-state lidar and free-space communication systems. Long-range, high-performance arrays require a large beam emission area densely packed with thousands of actively phase-controlled, power-hungry light emitting elements. To date, such large-scale phased arrays have been impossible to realize since current demonstrated technologies would operate at untenable electrical power levels. Here we show a multi-pass photonic platform integrated into a large-scale phased array that lowers phase shifter power consumption by nearly 9 times. The multi-pass structure decreases the power consumption of a thermo-optic phase shifter to a P π of 1.7 m W / π without sacrificing speed or optical bandwidth. Using this platform, we demonstrate a silicon photonic phased array containing 512 actively controlled elements, consuming only 1.9 W of power while performing 2D beam steering over a 70 ∘ × 6 ∘ field of view. Our results demonstrate a path forward to building scalable phased arrays containing thousands of active elements.</description><issn>2334-2536</issn><issn>2334-2536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkMtqwzAQRUVpoSHNulv9gBy9LNvLEvoCQ7pI6VKMZSlVsS0jOYT8fR3cRWczZ3HvMByEHhnNmFByu_84vO-esiKj1xE3aMWFkITnQt3-43u0SelnTjAhaV7RFfqqIR4tSQY6i8M4-Rnw-A3JthhihAs-JT8cMeAunMkYzjbi_tRNnoyQEk6-8yYMcyNMYfAGjx1MLsT-Ad056JLd_O01-nx5PuzeSL1_nT-tiRGVnEhJQebclYUtcqm4FTk1EpzjFQeVt7JUFWNGOQ5G0qZgraiqtmkcVaqU1DqxRtvlrokhpWidHqPvIV40o_qqRi9qdKEXNeIXKGVXqg</recordid><startdate>20200120</startdate><enddate>20200120</enddate><creator>Miller, Steven A.</creator><creator>Chang, You-Chia</creator><creator>Phare, Christopher T.</creator><creator>Shin, Min Chul</creator><creator>Zadka, Moshe</creator><creator>Roberts, Samantha P.</creator><creator>Stern, Brian</creator><creator>Ji, Xingchen</creator><creator>Mohanty, Aseema</creator><creator>Jimenez Gordillo, Oscar A.</creator><creator>Dave, Utsav D.</creator><creator>Lipson, Michal</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3296-2357</orcidid><orcidid>https://orcid.org/0000-0002-0284-0818</orcidid><orcidid>https://orcid.org/0000-0003-2193-0082</orcidid></search><sort><creationdate>20200120</creationdate><title>Large-scale optical phased array using a low-power multi-pass silicon photonic platform</title><author>Miller, Steven A. ; Chang, You-Chia ; Phare, Christopher T. ; Shin, Min Chul ; Zadka, Moshe ; Roberts, Samantha P. ; Stern, Brian ; Ji, Xingchen ; Mohanty, Aseema ; Jimenez Gordillo, Oscar A. ; Dave, Utsav D. ; Lipson, Michal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-80a452f87e75462e350c4aff292a65d486911c6f2ac40b71d399dbbf066840ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Steven A.</creatorcontrib><creatorcontrib>Chang, You-Chia</creatorcontrib><creatorcontrib>Phare, Christopher T.</creatorcontrib><creatorcontrib>Shin, Min Chul</creatorcontrib><creatorcontrib>Zadka, Moshe</creatorcontrib><creatorcontrib>Roberts, Samantha P.</creatorcontrib><creatorcontrib>Stern, Brian</creatorcontrib><creatorcontrib>Ji, Xingchen</creatorcontrib><creatorcontrib>Mohanty, Aseema</creatorcontrib><creatorcontrib>Jimenez Gordillo, Oscar A.</creatorcontrib><creatorcontrib>Dave, Utsav D.</creatorcontrib><creatorcontrib>Lipson, Michal</creatorcontrib><collection>CrossRef</collection><jtitle>Optica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Steven A.</au><au>Chang, You-Chia</au><au>Phare, Christopher T.</au><au>Shin, Min Chul</au><au>Zadka, Moshe</au><au>Roberts, Samantha P.</au><au>Stern, Brian</au><au>Ji, Xingchen</au><au>Mohanty, Aseema</au><au>Jimenez Gordillo, Oscar A.</au><au>Dave, Utsav D.</au><au>Lipson, Michal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-scale optical phased array using a low-power multi-pass silicon photonic platform</atitle><jtitle>Optica</jtitle><date>2020-01-20</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><spage>3</spage><pages>3-</pages><issn>2334-2536</issn><eissn>2334-2536</eissn><abstract>Optical phased arrays are a promising beam-steering technology for ultra-small solid-state lidar and free-space communication systems. Long-range, high-performance arrays require a large beam emission area densely packed with thousands of actively phase-controlled, power-hungry light emitting elements. To date, such large-scale phased arrays have been impossible to realize since current demonstrated technologies would operate at untenable electrical power levels. Here we show a multi-pass photonic platform integrated into a large-scale phased array that lowers phase shifter power consumption by nearly 9 times. The multi-pass structure decreases the power consumption of a thermo-optic phase shifter to a P π of 1.7 m W / π without sacrificing speed or optical bandwidth. Using this platform, we demonstrate a silicon photonic phased array containing 512 actively controlled elements, consuming only 1.9 W of power while performing 2D beam steering over a 70 ∘ × 6 ∘ field of view. Our results demonstrate a path forward to building scalable phased arrays containing thousands of active elements.</abstract><doi>10.1364/OPTICA.7.000003</doi><orcidid>https://orcid.org/0000-0002-3296-2357</orcidid><orcidid>https://orcid.org/0000-0002-0284-0818</orcidid><orcidid>https://orcid.org/0000-0003-2193-0082</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2334-2536
ispartof Optica, 2020-01, Vol.7 (1), p.3
issn 2334-2536
2334-2536
language eng
recordid cdi_crossref_primary_10_1364_OPTICA_7_000003
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
title Large-scale optical phased array using a low-power multi-pass silicon photonic platform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-scale%20optical%20phased%20array%20using%20a%20low-power%20multi-pass%20silicon%20photonic%20platform&rft.jtitle=Optica&rft.au=Miller,%20Steven%20A.&rft.date=2020-01-20&rft.volume=7&rft.issue=1&rft.spage=3&rft.pages=3-&rft.issn=2334-2536&rft.eissn=2334-2536&rft_id=info:doi/10.1364/OPTICA.7.000003&rft_dat=%3Ccrossref%3E10_1364_OPTICA_7_000003%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true