Large-scale optical phased array using a low-power multi-pass silicon photonic platform
Optical phased arrays are a promising beam-steering technology for ultra-small solid-state lidar and free-space communication systems. Long-range, high-performance arrays require a large beam emission area densely packed with thousands of actively phase-controlled, power-hungry light emitting elemen...
Gespeichert in:
Veröffentlicht in: | Optica 2020-01, Vol.7 (1), p.3 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Optical phased arrays are a promising beam-steering technology for ultra-small solid-state lidar and free-space communication systems. Long-range, high-performance arrays require a large beam emission area densely packed with thousands of actively phase-controlled, power-hungry light emitting elements. To date, such large-scale phased arrays have been impossible to realize since current demonstrated technologies would operate at untenable electrical power levels. Here we show a multi-pass photonic platform integrated into a large-scale phased array that lowers phase shifter power consumption by nearly 9 times. The multi-pass structure decreases the power consumption of a thermo-optic phase shifter to a P π of 1.7 m W / π without sacrificing speed or optical bandwidth. Using this platform, we demonstrate a silicon photonic phased array containing 512 actively controlled elements, consuming only 1.9 W of power while performing 2D beam steering over a 70 ∘ × 6 ∘ field of view. Our results demonstrate a path forward to building scalable phased arrays containing thousands of active elements. |
---|---|
ISSN: | 2334-2536 2334-2536 |
DOI: | 10.1364/OPTICA.7.000003 |