Limitations of beam-control compensation

In this paper, we use wave-optics simulations to explore the limitations of beam-control compensation. We evaluate performance in terms of the normalized power in a diffraction-limited bucket for the cases of no beam-control compensation, perfect phase compensation, and perfect full-field compensati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2024-11, Vol.32 (24), p.42301
Hauptverfasser: Kalensky, Matthew, Getts, Darren, Banet, Matthias T., Burrell, Derek J., Hyde, Milo W., Spencer, Mark F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page 42301
container_title Optics express
container_volume 32
creator Kalensky, Matthew
Getts, Darren
Banet, Matthias T.
Burrell, Derek J.
Hyde, Milo W.
Spencer, Mark F.
description In this paper, we use wave-optics simulations to explore the limitations of beam-control compensation. We evaluate performance in terms of the normalized power in a diffraction-limited bucket for the cases of no beam-control compensation, perfect phase compensation, and perfect full-field compensation. From these results, we are able to arrive at the following conclusions: (1) without any form of beam-control compensation, performance begins to degrade when D / r 0 > 1; (2) with perfect phase compensation, performance begins to degrade when D / r 0 > 1 and ( λ / r 0 )/ θ 0 > 1; and (3) with perfect full-field compensation, performance begins to degrade when D / r 0 > 1 and ( λ / D )/ θ 0 > 1. Here, D is the aperture diameter, r 0 is the Fried parameter, λ is the wavelength, and θ 0 is the isoplanatic angle. We show (1)–(3) to be true for varying aperture diameters, uniformly distributed turbulence, and varying turbulence profiles. These findings will inform the development of future laser systems that need to sense and correct for the effects of atmospheric turbulence.
doi_str_mv 10.1364/OE.539797
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1364_OE_539797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1364_OE_539797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c697-bc2248534ff6557be96568d960595b14481f0f8ad257a99d44944b7512a462523</originalsourceid><addsrcrecordid>eNpNj0tLxDAUhYMoOI4u_Add6qJjHvfmsZShPqDQzexDkiZQmTZD0o3_3se4cHUOnI8DHyH3jO6YkPA0dDsURhl1QTaMGmiBanX5r1-Tm1o_KGXwDW3IQz_N0-rWKS-1yanx0c1tyMta8rEJeT7Fpf6ut-QquWONd3-5JYeX7rB_a_vh9X3_3LdBGtX6wDloFJCSRFQ-GolSj0ZSNOgZgGaJJu1GjsoZMwIYAK-QcQeSIxdb8ni-DSXXWmKypzLNrnxaRu2PoR06ezYUX9-IQSI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Limitations of beam-control compensation</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kalensky, Matthew ; Getts, Darren ; Banet, Matthias T. ; Burrell, Derek J. ; Hyde, Milo W. ; Spencer, Mark F.</creator><creatorcontrib>Kalensky, Matthew ; Getts, Darren ; Banet, Matthias T. ; Burrell, Derek J. ; Hyde, Milo W. ; Spencer, Mark F.</creatorcontrib><description>In this paper, we use wave-optics simulations to explore the limitations of beam-control compensation. We evaluate performance in terms of the normalized power in a diffraction-limited bucket for the cases of no beam-control compensation, perfect phase compensation, and perfect full-field compensation. From these results, we are able to arrive at the following conclusions: (1) without any form of beam-control compensation, performance begins to degrade when D / r 0 &gt; 1; (2) with perfect phase compensation, performance begins to degrade when D / r 0 &gt; 1 and ( λ / r 0 )/ θ 0 &gt; 1; and (3) with perfect full-field compensation, performance begins to degrade when D / r 0 &gt; 1 and ( λ / D )/ θ 0 &gt; 1. Here, D is the aperture diameter, r 0 is the Fried parameter, λ is the wavelength, and θ 0 is the isoplanatic angle. We show (1)–(3) to be true for varying aperture diameters, uniformly distributed turbulence, and varying turbulence profiles. These findings will inform the development of future laser systems that need to sense and correct for the effects of atmospheric turbulence.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.539797</identifier><language>eng</language><ispartof>Optics express, 2024-11, Vol.32 (24), p.42301</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c697-bc2248534ff6557be96568d960595b14481f0f8ad257a99d44944b7512a462523</cites><orcidid>0000-0001-9722-9546 ; 0009-0004-7994-8116 ; 0000-0002-3803-3938 ; 0000-0003-2814-202X ; 0000-0003-2065-6069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Kalensky, Matthew</creatorcontrib><creatorcontrib>Getts, Darren</creatorcontrib><creatorcontrib>Banet, Matthias T.</creatorcontrib><creatorcontrib>Burrell, Derek J.</creatorcontrib><creatorcontrib>Hyde, Milo W.</creatorcontrib><creatorcontrib>Spencer, Mark F.</creatorcontrib><title>Limitations of beam-control compensation</title><title>Optics express</title><description>In this paper, we use wave-optics simulations to explore the limitations of beam-control compensation. We evaluate performance in terms of the normalized power in a diffraction-limited bucket for the cases of no beam-control compensation, perfect phase compensation, and perfect full-field compensation. From these results, we are able to arrive at the following conclusions: (1) without any form of beam-control compensation, performance begins to degrade when D / r 0 &gt; 1; (2) with perfect phase compensation, performance begins to degrade when D / r 0 &gt; 1 and ( λ / r 0 )/ θ 0 &gt; 1; and (3) with perfect full-field compensation, performance begins to degrade when D / r 0 &gt; 1 and ( λ / D )/ θ 0 &gt; 1. Here, D is the aperture diameter, r 0 is the Fried parameter, λ is the wavelength, and θ 0 is the isoplanatic angle. We show (1)–(3) to be true for varying aperture diameters, uniformly distributed turbulence, and varying turbulence profiles. These findings will inform the development of future laser systems that need to sense and correct for the effects of atmospheric turbulence.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNj0tLxDAUhYMoOI4u_Add6qJjHvfmsZShPqDQzexDkiZQmTZD0o3_3se4cHUOnI8DHyH3jO6YkPA0dDsURhl1QTaMGmiBanX5r1-Tm1o_KGXwDW3IQz_N0-rWKS-1yanx0c1tyMta8rEJeT7Fpf6ut-QquWONd3-5JYeX7rB_a_vh9X3_3LdBGtX6wDloFJCSRFQ-GolSj0ZSNOgZgGaJJu1GjsoZMwIYAK-QcQeSIxdb8ni-DSXXWmKypzLNrnxaRu2PoR06ezYUX9-IQSI</recordid><startdate>20241118</startdate><enddate>20241118</enddate><creator>Kalensky, Matthew</creator><creator>Getts, Darren</creator><creator>Banet, Matthias T.</creator><creator>Burrell, Derek J.</creator><creator>Hyde, Milo W.</creator><creator>Spencer, Mark F.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9722-9546</orcidid><orcidid>https://orcid.org/0009-0004-7994-8116</orcidid><orcidid>https://orcid.org/0000-0002-3803-3938</orcidid><orcidid>https://orcid.org/0000-0003-2814-202X</orcidid><orcidid>https://orcid.org/0000-0003-2065-6069</orcidid></search><sort><creationdate>20241118</creationdate><title>Limitations of beam-control compensation</title><author>Kalensky, Matthew ; Getts, Darren ; Banet, Matthias T. ; Burrell, Derek J. ; Hyde, Milo W. ; Spencer, Mark F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c697-bc2248534ff6557be96568d960595b14481f0f8ad257a99d44944b7512a462523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalensky, Matthew</creatorcontrib><creatorcontrib>Getts, Darren</creatorcontrib><creatorcontrib>Banet, Matthias T.</creatorcontrib><creatorcontrib>Burrell, Derek J.</creatorcontrib><creatorcontrib>Hyde, Milo W.</creatorcontrib><creatorcontrib>Spencer, Mark F.</creatorcontrib><collection>CrossRef</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalensky, Matthew</au><au>Getts, Darren</au><au>Banet, Matthias T.</au><au>Burrell, Derek J.</au><au>Hyde, Milo W.</au><au>Spencer, Mark F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limitations of beam-control compensation</atitle><jtitle>Optics express</jtitle><date>2024-11-18</date><risdate>2024</risdate><volume>32</volume><issue>24</issue><spage>42301</spage><pages>42301-</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>In this paper, we use wave-optics simulations to explore the limitations of beam-control compensation. We evaluate performance in terms of the normalized power in a diffraction-limited bucket for the cases of no beam-control compensation, perfect phase compensation, and perfect full-field compensation. From these results, we are able to arrive at the following conclusions: (1) without any form of beam-control compensation, performance begins to degrade when D / r 0 &gt; 1; (2) with perfect phase compensation, performance begins to degrade when D / r 0 &gt; 1 and ( λ / r 0 )/ θ 0 &gt; 1; and (3) with perfect full-field compensation, performance begins to degrade when D / r 0 &gt; 1 and ( λ / D )/ θ 0 &gt; 1. Here, D is the aperture diameter, r 0 is the Fried parameter, λ is the wavelength, and θ 0 is the isoplanatic angle. We show (1)–(3) to be true for varying aperture diameters, uniformly distributed turbulence, and varying turbulence profiles. These findings will inform the development of future laser systems that need to sense and correct for the effects of atmospheric turbulence.</abstract><doi>10.1364/OE.539797</doi><orcidid>https://orcid.org/0000-0001-9722-9546</orcidid><orcidid>https://orcid.org/0009-0004-7994-8116</orcidid><orcidid>https://orcid.org/0000-0002-3803-3938</orcidid><orcidid>https://orcid.org/0000-0003-2814-202X</orcidid><orcidid>https://orcid.org/0000-0003-2065-6069</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2024-11, Vol.32 (24), p.42301
issn 1094-4087
1094-4087
language eng
recordid cdi_crossref_primary_10_1364_OE_539797
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
title Limitations of beam-control compensation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A12%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limitations%20of%20beam-control%20compensation&rft.jtitle=Optics%20express&rft.au=Kalensky,%20Matthew&rft.date=2024-11-18&rft.volume=32&rft.issue=24&rft.spage=42301&rft.pages=42301-&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.539797&rft_dat=%3Ccrossref%3E10_1364_OE_539797%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true