730 mW, 2-8 μm supercontinuum generation and the precise estimation of multi-pulse spectral evolution in the soft-glass fibers cascaded nonlinear system
We experimentally demonstrate the 2-8 μm high-power supercontinuum generation and theoretically propose a statistical method for precise estimation of the multi-pulse spectral evolution in the ZBLAN and As2S3 fiber cascaded all-fiber structured nonlinear system. In the experiment, with the aid of th...
Gespeichert in:
Veröffentlicht in: | Optics express 2021-12, Vol.29 (25), p.40934 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We experimentally demonstrate the 2-8 μm high-power supercontinuum generation and theoretically propose a statistical method for precise estimation of the multi-pulse spectral evolution in the ZBLAN and As2S3 fiber cascaded all-fiber structured nonlinear system. In the experiment, with the aid of the ultra-low loss fusion splice technology, high-efficiency fiber butt-coupling technology and precise thermal management technology, we obtained a record-breaking supercontinuum source with a spectrum spanning from 2 μm to 8 μm at a power of 730 mW. Considering the strong pulse splitting and soliton fission effects in fibers, to precisely estimate the multi-pulse spectral evolution in this system, we, for the first time, built a multi-pulse pump model with the Pearson product-moment correlation coefficient method based multi-pulse selection mechanism. In combination with the existing approaches and some new programmatic work, finally, we verified that the simulation results are in good agreement with the experimental one. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.441354 |