Stealth and secured optical coherent transmission using a gain switched frequency comb and multi-homodyne coherent detection

A novel all-optical stealth and secured transmission is proposed and demonstrated. Spectral replicas of the covert signal are carried by multiple tones of a gain switched optical frequency comb, optically coded with spectral phase mask, and concealed below EDFA's noise. The secured signal'...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2021-11, Vol.29 (24), p.40462-40480
Hauptverfasser: Wohlgemuth, Eyal, Yoffe, Yaron, Goki, Pantea Nadimi, Imran, Muhammad, Fresi, Francesco, Lakshmijayasimha, Prajwal Doddaballapura, Cohen, Roi, Anandarajah, Prince, Poti, Luca, Sadot, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel all-optical stealth and secured transmission is proposed and demonstrated. Spectral replicas of the covert signal are carried by multiple tones of a gain switched optical frequency comb, optically coded with spectral phase mask, and concealed below EDFA's noise. The secured signal's spectrum is spread far beyond the bandwidth of a coherent receiver, thus forcing real time all-optical processing. An unauthorized user, who does not possess knowledge on the phase mask, can only obtain a noisy and distorted signal, that cannot be improved by post-processing. On the other hand, the authorized user decodes the signal using an inverse spectral phase mask and achieves a substantial optical processing gain via multi-homodyne coherent detection. A transmission of 20 Gbps under negative -7.5 dB OSNR is demonstrated here, yielding error-free detection by the eligible user. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.431070