Dynamically adjustable-induced THz circular dichroism and biosensing application of symmetric silicon-graphene-metal composite nanostructures
Induced circular dichroism (ICD) has been used to detect biomolecular conformations through the coupling between chiral molecules and achiral metal nanostructures with the localized surface plasmon (LSP). However, this ICD is always weak and cannot be dynamically adjusted. Here, we put dielectric an...
Gespeichert in:
Veröffentlicht in: | Optics express 2021-03, Vol.29 (6), p.8087 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Induced circular dichroism (ICD) has been used to detect biomolecular conformations through the coupling between chiral molecules and achiral metal nanostructures with the localized surface plasmon (LSP). However, this ICD is always weak and cannot be dynamically adjusted. Here, we put dielectric and graphene nanostructures on a metal-substrate for restricting more light energies and obtaining dynamic adjustable performance. A composite nanostructure array composed of achiral silicon-nanorods on a metal-substrate and graphene-ribbons (ASMG) is theoretically investigated. Two strong ICD signals appear in the THz region. Near-field magnetic distributions of ASMG reveal that the two strong ICD signals are mainly due to the surface plasmon resonances (SPPs) on the metal-substrate and LSP in the graphene nanostructures, respectively. The ICD signals strongly depend on the geometric parameters of ASMG and are dynamically adjusted by just changing the Fermi levels of graphene-ribbons. In addition, left-handed ASMG and right-handed ASMG can be used to identify the chiral molecular solutions with different chiralities. The maximum enhancement factor of the chiral molecular solutions could reach up to 3500 times in the THz region. These results can help to design dynamically adjustable THz chiral sensors and promote their application in biological monitoring and asymmetric catalysis. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.419614 |