LSPR optical fiber biosensor based on a 3D composite structure of gold nanoparticles and multilayer graphene films

In this paper, a localized surface-plasmon resonance (LSPR) biosensor, which uses a U-shaped multi-mode fiber (U-MMF), is introduced and investigated. It is modified with a complex of three-dimensional (3D) gold nanoparticles and multilayer graphene as spacer: n*(Au/G)@U-MMF, where n denotes the lay...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2020-03, Vol.28 (5), p.6071
Hauptverfasser: Li, Can, Li, Zhen, Li, Shuanglu, Zhang, Yanan, Sun, Baoping, Yu, Yuehao, Ren, Haiyang, Jiang, Shouzhen, Yue, Weiwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a localized surface-plasmon resonance (LSPR) biosensor, which uses a U-shaped multi-mode fiber (U-MMF), is introduced and investigated. It is modified with a complex of three-dimensional (3D) gold nanoparticles and multilayer graphene as spacer: n*(Au/G)@U-MMF, where n denotes the layer number of gold nanoparticles. The gold nanoparticles were synthesized by reducing chloroauric acid. Graphene films were formed using a liquid/chemical method. The number of gold-nanoparticle layers was found to be critical for the performance of the sensor. Moreover, using the finite-difference time domain, 3D nanostructures, with a wide range of gold-nanoparticle layers, were explored. The sensor showed the sensitivity of 1251.44 nm/RIU, as well as high stability and repeatability; for the measurement-process of time- and concentration-dependent DNA hybridization kinetics with detection concentrations, ranging from 0.1nM to 100 nM, the sensor displayed excellent performance, which points towards a vast potential in the field of medical diagnostics.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.385128