High-order dispersion mapping of an optical fiber
We report on measurements of high-order dispersion maps of an optical fiber, showing how the ratio between the third and fourth-order dispersion (beta(3)/beta(4)) and the zero-dispersion wavelength (lambda(0)) vary along the length of the fiber. Our method is based on Four-Wave Mixing between short...
Gespeichert in:
Veröffentlicht in: | Optics express 2020-02, Vol.28 (3), p.4258-4273 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report on measurements of high-order dispersion maps of an optical fiber, showing how the ratio between the third and fourth-order dispersion (beta(3)/beta(4)) and the zero-dispersion wavelength (lambda(0)) vary along the length of the fiber. Our method is based on Four-Wave Mixing between short pulses derived from an incoherent pump and a weak laser. We find that the variations in the ratio beta(3)/beta(4) are correlated to those in lambda(0). We present also numerical calculations to illustrate the limits on the spatial resolution of the method. Due to the good accuracy in measuring lambda(0) and beta(3)/beta(4) (10(-3) % and 5% relative error, respectively), and its simplicity, the method can be used to identify fiber segments of good uniformity, suitable to build nonlinear optical devices such as parametric amplifiers and frequency comb generators. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.379512 |