Mixed-mode-state control of photonic-crystal lasers under CW operation

Mixed-mode-state control of lasers under continuous-wave (CW) operation, where multi-physics interactions among carriers, photons, and heat are involved, is important for realizing desired lasing characteristics, as well as for dynamic control of lasers. In this paper, we demonstrate mixed-mode-stat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. B, Optical physics Optical physics, 2024-02, Vol.41 (2), p.392
Hauptverfasser: Izumi, Koki, De Zoysa, Menaka, Nakagawa, Yuichiro, Gyoja, Naoki, Inoue, Takuya, Katsuno, Shumpei, Sakata, Ryoichi, Ishizaki, Kenji, Yoshida, Masahiro, Gelleta, John, Hatsuda, Ranko, Noda, Susumu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mixed-mode-state control of lasers under continuous-wave (CW) operation, where multi-physics interactions among carriers, photons, and heat are involved, is important for realizing desired lasing characteristics, as well as for dynamic control of lasers. In this paper, we demonstrate mixed-mode-state control of a photonic-crystal surface-emitting laser (PCSEL) under CW operation by manipulating its current injection distribution. To control the current injection distribution, we introduce a multiple-electrode matrix into the p-side of the PCSEL, and we bond the PCSEL to a heatsink in the p-side-down-configuration to dissipate heat while also enabling current injection via each p-side electrode. Furthermore, we employ a convolutional neural network (CNN) to correlate the current distributions and the far-field patterns (FFPs) corresponding to the mode states, and to predict the current distributions necessary to obtain targeted FFPs. FFPs resembling the targeted ones with high fidelity (90%) are obtained by using the constructed CNN. These results lead to the realization of next-generation smart CW lasers capable of mixed-mode-state control even in a dynamic environment, which are essential for applications such as advanced material processing and even aerospace.
ISSN:0740-3224
1520-8540
DOI:10.1364/JOSAB.509908