Validation and characterization of algorithms and software for photonics inverse design
In this work, we present a reproducible suite of test problems for large-scale optimization (“inverse design” and “topology optimization”) in photonics, where the prevalence of irregular, non-intuitive geometries can otherwise make it challenging to be confident that new algorithms and software are...
Gespeichert in:
Veröffentlicht in: | Journal of the Optical Society of America. B, Optical physics Optical physics, 2024-02, Vol.41 (2), p.A161 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we present a reproducible suite of test problems for large-scale optimization (“inverse design” and “topology optimization”) in photonics, where the prevalence of irregular, non-intuitive geometries can otherwise make it challenging to be confident that new algorithms and software are functioning as claimed. We include test problems that exercise a wide array of physical and mathematical features—far-field metalenses, 2d and 3d mode converters, resonant emission and focusing, and dispersion/eigenvalue engineering—and introduce an
a posteriori
lengthscale metric for comparing designs produced by disparate algorithms. For each problem, we incorporate cross-checks against multiple independent software packages and algorithms, and reproducible designs and their validations scripts are included. We believe that this suite should make it much easier to develop, validate, and gain trust in future inverse-design approaches and software. |
---|---|
ISSN: | 0740-3224 1520-8540 |
DOI: | 10.1364/JOSAB.506412 |