Validation and characterization of algorithms and software for photonics inverse design

In this work, we present a reproducible suite of test problems for large-scale optimization (“inverse design” and “topology optimization”) in photonics, where the prevalence of irregular, non-intuitive geometries can otherwise make it challenging to be confident that new algorithms and software are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. B, Optical physics Optical physics, 2024-02, Vol.41 (2), p.A161
Hauptverfasser: Chen, Mo, Christiansen, Rasmus E., Fan, Jonathan A., Işiklar, Göktuğ, Jiang, Jiaqi, Johnson, Steven G., Ma, Wenchao, Miller, Owen D., Oskooi, Ardavan, Schubert, Martin F., Wang, Fengwen, Williamson, Ian A. D., Xue, Wenjin, Zhou, You
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we present a reproducible suite of test problems for large-scale optimization (“inverse design” and “topology optimization”) in photonics, where the prevalence of irregular, non-intuitive geometries can otherwise make it challenging to be confident that new algorithms and software are functioning as claimed. We include test problems that exercise a wide array of physical and mathematical features—far-field metalenses, 2d and 3d mode converters, resonant emission and focusing, and dispersion/eigenvalue engineering—and introduce an a posteriori lengthscale metric for comparing designs produced by disparate algorithms. For each problem, we incorporate cross-checks against multiple independent software packages and algorithms, and reproducible designs and their validations scripts are included. We believe that this suite should make it much easier to develop, validate, and gain trust in future inverse-design approaches and software.
ISSN:0740-3224
1520-8540
DOI:10.1364/JOSAB.506412