Simulation of sympathetic cooling an optically levitated magnetic nanoparticle via coupling to a cold atomic gas

A proposal for cooling the translational motion of optically levitated magnetic nanoparticles is presented. The theoretical cooling scheme involves the sympathetic cooling of a ferromagnetic YIG nanosphere with a spin-polarized atomic gas. The particle–atom cloud coupling is mediated through the mag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. B, Optical physics Optical physics, 2020-12, Vol.37 (12), p.3714
Hauptverfasser: Seberson, T., Ju, Peng, Ahn, Jonghoon, Bang, Jaehoon, Li, Tongcang, Robicheaux, F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A proposal for cooling the translational motion of optically levitated magnetic nanoparticles is presented. The theoretical cooling scheme involves the sympathetic cooling of a ferromagnetic YIG nanosphere with a spin-polarized atomic gas. The particle–atom cloud coupling is mediated through the magnetic dipole–dipole interaction. When the particle and atom oscillations are small compared to their separation, the interaction potential becomes dominantly linear, which allows the particle to exchange energy with the N atoms. While the atoms are continuously Doppler cooled, energy is able to be removed from the nanoparticle’s motion as it exchanges energy with the atoms. The rate at which energy is removed from the nanoparticle’s motion was studied for three species of atoms (Dy, Cr, Rb) by simulating the full N + 1 equations of motion and was found to depend on system parameters with scalings that are consistent with a simplified model. The nanoparticle’s damping rate due to sympathetic cooling is competitive with and has the potential to exceed commonly employed cooling methods.
ISSN:0740-3224
1520-8540
DOI:10.1364/JOSAB.404985